Elastic Properties of Porous Media Containing Gas Hydrates
PDF (Russian)

Keywords

porous medium
hydrate
elastic waves
velocity

How to Cite

1.
Gubaidullin A.A., Boldyreva O.Y., Dudko D.N. Elastic Properties of Porous Media Containing Gas Hydrates // Russian Journal of Cybernetics. 2021. Vol. 2, № 2. P. 82-89. DOI: 10.51790/2712-9942-2021-2-2-7.

Abstract

The state-of-the-art experimental and theoretical studies of the elastic properties of porous media containing gas hydrate was analyzed. It is concluded that all the experiments identified a relationship between the elastic wave velocities and the hydrate content in the porous space: the velocities increase with higher hydrate saturation. The theoretical research produced simulation models for estimating the modulus of elasticity of hydrate-containing porous media to qualitatively and quantitatively describe the results of laboratory experiments.

https://doi.org/10.51790/2712-9942-2021-2-2-7
PDF (Russian)

References

Voigt W. Lehrbuch der Kristallphysik. Leipzig: Teubner; 1928. 962 p.

Reuss A. Berechung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung (Determination of the Yield Point of Polycrystals Based on the Yield Condition of Single Crystals). Z. Angew. Math. Und Mech. 1929;9(1):49-58.

Hill R. The Elastic Behavoiur of a Crystalline Aggregate. Proc. Phys. Soc. A. 1952;65:349-354.

Helgerud M. B., Dvorkin J., Nur A. Elastic-Wave Velocity in Marine Sediments with Gas Hydrates: Effective Medium Modeling. Geophys. Res. Letters. 1999;26(13):2021-2024.

Dvorkin J., Nur A. Elasticity of High-Porosity Sandstones: Theory for Two North Sea Data Sets. Geophysics. 1996;61:1363–1370.

Mindlin R. D. Compliance of Elastic Bodies in Contact. Journal of Applied Mechanics. 1949;16:259-268.

Mavko G., Mukerji T., Dvorkin J. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media. Cambridge University Press, Cambridge; 1998.

Dvorkin J., Nur A., Yin H. Effective Properties of Cemented Granular Materials. Mech. Mater. 1994;18:351–366.

Priest J. A., Best A. I., Clayton C. R. I. A Laboratory Investigation into Seismic Velocities of Methane Gas Hydrate-Bearing Sand. Journal of Geophysical Research. 2005;110:B04102.

Li Feng-Guang, Sun Chang-Yu, Zhang Qin, Liu Xiao-Xiang, Guo Xu-Qiang, Chen Guang-Jin. Laboratory Measurements of the Effects of Methane/Tetrahydrofuran Concentration and Grain Size on the P-Wave Velocity of Hydrate-Bearing Sand. Energy Fuels. 2011;25:2076–2082. dx.doi.org/10.1021/ef101665v.

Waite W. F., Santamarina J. C., Rydzy M., Chong S. H., Grozic J. L. H., Hester K., Howard J., Kneafsey T. J., Lee J. Y., Nakagawa S., Priest J., Rees E., Sloan E. D. Overview of the Inter-Laboratory Comparison of Wave Velocity Measurements in Sand with Gas Hydrates and Other Pore-Filling Materials. Fire in the Ice. 2012;12(1):16-21.

Bu Q. T., Hu G. W., Ye Y. G., Liu C. L., Li C. F., Best A. I., Wang J. C. The Elastic Wave Velocity Response of Methane Gas Hydrate Formation in Vertical Gas Migration Systems. J. Geophys. Eng. 2017;14:555–569.

Duchkov A. D., Duchkov A. A., Permyakov M. E., Golikov N. A., Drobchik A. N., Manakov A. Y. Laboratory Modeling and Measurement of the Acoustic Properties of Methane-Bearing Rock Samples. Doklady Earth Sciences. 2017;472(1):44-48. DOI: 10.7868/S0869565217010169.

Duchkov A. D., Duchkov A. A., Dugarov G. A., Drobchik A. N. Velocities of Ultrasonic Waves in Sand Samples Containing Water, Ice, or Methane and Tetrahydrofuran Hydrates (Laboratory Measurements). Doklady Earth Sciences. 2018;478(1):74-78.

Dugarov G. A., Duchkov A. A., Duchkov A. D., Drobchik A. N. Laboratory Study of the Acoustic Properties of Hydrate-Bearing Sediments. Moscow University Physics Bulletin. 2017;5:1750812. (In Russ.)

Duchkov A. D., Dugarov G. A., Duchkov A. A., Drobchik A. A. Laboratory Investigations into the Velocities and Attenuation of Ultrasonic Waves in Sand Samples Containing Water/Ice and Methane and Tetrahydrofuran Hydrates. Russian Geology and Geophysics. 2019;60(2):193-203. DOI: 10.15372/GiG2019015.

Nefedkina T. V., Lykhin P. A., Dugarov G. A. Determination of Azimuthal Anisotropic Media Elastic Parameters from Multiwave AVOA Data by Nonlinear Optimization Method. Russian Journal of Geophysical Technologies. 2018;2:14–26. (In Russ.) DOI: 10.18303/2619–1563–2018–2–2.

Fokin M. I., Dugarov G. A., Duchkov A. A. Experimental Acoustic Measurements on Unconsolidated Sandy Samples Containing Methane Hydrate. Moscow University Physics Bulletin. 2019;4:1940501. (In Russ.)

Drobchik A. N., Dugarov G. A., Duchkov A. A., Kuper K. E. Acoustic Measurements and X-Ray Tomography of Sand Samples Containing Xenon Hydrate. Russian Journal of Geophysical Technologies. 2019;4:17–23. (In Russ.) DOI: 10.18303/2619–1563–2019–4–17.

Nikitin V. V., Dugarov G. A., Duchkov A. A., Fokin M. I., Drobchik A. N., Shevchenko P. D., De Carlod F., Mokso R. Dynamic In-Situ Imaging of Methane Hydrate Formation and Selfpreservation in Porous Media. Marine and Petroleum Geology. May 2020;115:104234. https://doi.org/10.1016/j.marpetgeo.2020.104234.

Dugarov G. A., Duchkov A. A., Duchkov A. D., Drobchik A. N. Laboratory Validation of Effective Acoustic Velocity Models for Samples Bearing Hydrates of Different Type. Journal of Natural Gas Science and Engineering. 2019;63:38-46. https: //doi.org/10.1016/j.jngse.2019.01.007.

Ebinuma T., Suzuki K., Nagao J., Oyama H., Narita H. Ultrasonic Wave Velocities Associated with Formation and Dissociation of Methane Hydrate in Artificial Sandy Sediment. Offshore Technology Conference. 2008; OTC 19260.

Ren Shao Ran, Liu Yongjun, Liu Yixing, Zhang Weidong. Acoustic Velocity and Electrical Resistance of Hydrate Bearing Sediments. Journal of Petroleum Science and Engineering. 2010;70(1–2):52–56. DOI: 10.1016/j.petrol.2009.09.001.

Rydzy M. B. The Effect of Hydrate Formation on the Elastic Properties of Unconsolidated Sediment. 2014. PhD thesis. Colorado School of Mines, Colorado, USA.

Yun T. S., Francisca F. M., Santamarina J. C., Ruppel C. Compressional and Shear Wave Velocity in Uncemented Sediment Containing Gas Hydrate. Geophysical Research Letters. 2005;32:L10609.

Lee J. Y., Francisca F. M., Santamarina J. C., Ruppel C. Parametric Study of the Physical Properties of Hydrate-Bearing Sand, Silt, and Clay Sediments: 2. Small-Strain Mechanical Properties. Journal of Geophysical Research. 2010;115:B11105. DOI: 10.1029/2009JB006670.

Lee J. Y., Santamarina J. C., Ruppel C. Volume Change Associated with the Formation and Dissociation of Hydrate in Sediment. Geochemistry, Geophysics, Geosystems. 2010;11(3):13.

Downloads

Download data is not yet available.