Linear Difference Equations and Fibonacci Structures
PDF (Russian)

Keywords

difference equations
Fibonacci numbers
Phidias numbers

How to Cite

1.
Deev G.E., Ermakov S.V., Starkloff S. Linear Difference Equations and Fibonacci Structures // Russian Journal of Cybernetics. 2025. Vol. 6, № 2. P. 60–66.

Abstract

we studied the solution of linear difference equations of arbitrary order and demonstrated that they can be expressed using the Fibonacci structure, which we defined in the course of our presentation. This structure, which consists of number sequences related to the classical Fibonacci numbers, is of independent interest. Each sequence in the structure has an associated Phidias number. In this paper, we present several results on the properties of the Fibonacci structure and Phidias numbers.

PDF (Russian)

References

Гельфонд А. О. Исчисление конечных разностей. М.: Наука; 1967.

Gelfond A. O. Differenzenrechnung. Berlin: Deutsch. Verl. Wiss.; 1958.

Самарский А. А. Введение в теорию разностных схем. М.: Наука; 1971.

Кострикин А. И. Введение в алгебру. М.: Наука; 1994.

Воеводин В. В. Численные методы алгебры. М.: Наука; 1976.

Успенский В. А. Треугольник Паскаля. М.: Наука; 1979.

Воробьев Н. Н. Числа Фибоначчи. М.: Наука; 1978.

Hackbusch W. Tensor Spaces and Numerical Tensor Calculus. Berlin: Springer; 2012. DOI: 10.1007/9783-642-28027-6.

Downloads

Download data is not yet available.