Point Cloud (Irregular Grid) Interpolation with the Curved Point-Normal Triangles
PDF (Russian)

Keywords

interpolation
point cloud
irregular grid
Bezier triangle
vertex normal
curved pointnormal triangles
PN triangles

How to Cite

1.
Legotin A.L., Vinogradov G.K. Point Cloud (Irregular Grid) Interpolation with the Curved Point-Normal Triangles // Russian Journal of Cybernetics. 2025. Vol. 6, № 1. P. 35–46.

Abstract

we examine interpolation from a point cloud, where data is arranged in an irregular grid, as it plays a crucial role in both scientific research and practical applications. We developed an algorithm for interpolating irregular data using a parameterized curved point-normal triangle. We also address the challenge of selecting vertex normals for the surface.

PDF (Russian)

References

Роджерс Д., Адамс Дж. Математические основы машинной графики: Пер. с англ. М.: Мир; 2001. 604 с., ил. ISBN: 5-03-002143-4.

Farin G. Curves and Surfaces for CAGD: A Practical Guide (5th Edition). Morgan-Kaufmann; 2002. ISBN: 1-55860-737-4.

Farin G. Triangular Bernstein-Bezier Patches.´ Computer Aided Geometric Design. 1986;3(2):83–127. DOI: 10.1016/0167-8396(86)90016-6.

Liu Y. Triangular Bezier Surfaces with Approximate Continuity. University of Waterloo Computer Science Dept. University Avenue Waterloo; Canada. ISBN: 978-0-494-43305-8.

Vlachos A., Peters J., Boyd C., Mitchell J. L. Curved PN Triangles. Proceedings of the 2001 Symposium on Interactive 3D Graphics (I3D ’01). Association for Computing Machinery, New York, NY, USA; 2001:159–166. DOI: 10.1145/364338.364387.

Скворцов А. В., Мирза Н. С. Алгоритмы построения и анализа триангуляции. Томск: Изд-во Том. ун-та; 2006. ISBN: 5-7511-2028-5.

Leth N. W., Petersen H. G. A New Method for Generating Work Piece Surface Representations for Robotic Machining. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic; 2021:7607–7614. DOI: 10.1109/IROS51168.2021.9636774.

Jin S., Lewis R., West D. A Comparison of Algorithms for Vertex Normal Computation. Vis Comput. 2005;21(1-2):71–82. DOI: 10.1007/s00371-004-0271-1.

Downloads

Download data is not yet available.