Tsunami Simulation on a PC
PDF (Russian)

Keywords

tsunami simulation
hardware acceleration
transoceanic tsunami

How to Cite

1.
Lavrentiev M.M., Marchuk A.G., Oblaukhov K.K., Shadrin M.Y. Tsunami Simulation on a PC // Russian Journal of Cybernetics. 2025. Vol. 6, № 1. P. 23–34.

Abstract

we designed hardware code acceleration architectures for solving the nonlinear system of shallow water equations, enabling to run it on a PC or other device. We achieved sufficient computational performance to conduct numerical experiments on transoceanic tsunamis. We proposed a method to adjust source parameters based on wave profile data from deep-sea pressure sensors. By optimizing the computational pipeline and implementing the McCormack finite-difference scheme with second-order approximation, we computed values at seven consecutive time steps within a single clock cycle. Using a Xilinx Virtex-7 VC709 chip as a co-processor on a computational grid of 9,601×6,781 nodes, we performed 36,000 time steps with a 3-second interval, simulating 30 hours of wave propagation in just 1,352 seconds (22.5 minutes). We validated our numerical solution against known exact solutions, analyzed how global bathymetric data affect calculations, and justified the use of the nested grid method. The proposed technology enhances our ability to study tsunamis.

PDF (Russian)

References

Thomas D., Howes L., Luk W. A Comparison of CPUs, GPUs, FPGAs, and MPPAs for Random Number Generation. Proc. of FPGA. 2009.

Wei Y., Chamberlin C., Titov V. V. et al. Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast. Pure Appl. Geophys. 2012;170(6–8):1309–1331. DOI: 10.1007/s00024-012-0519-z.

National Data Buoy Center. Режим доступа: https://www.ndbc.noaa.gov/obs.shtml.

DART (Deep-ocean Assessment and Reporting of Tsunamis). Режим доступа: http://nctr.pmel.noaa.gov/Dart/.

Research and Development Center for Earthquake and Tsunami. Режим доступа: https://www.jamstec.go.jp/donet/e/.

S-net Scheme. Режим доступа: https://www.seafloor.bosai.go.jp/S-net/. (In Japanese)

S-net Coordinates. Режим доступа: https://www.seafloor.bosai.go.jp/st_info/. (In Japanese)

Titov V. V., Gonzalez F. I. Implementation and Testing of the Method of Splitting Tsunami (MOST) Model. NOAA Technical Memorandum ERL PMEL-112. NOAA: Washington, DC, USA; 1997.

Gica E., Spillane M., Titov V. et al. Development of the Forecast Propagation Database for NOAA’s ShortTerm Inundation Forecast for Tsunamis (SIFT). NOAA Technical Memorandum. NOAA: Washington, DC, USA; 2008. Режим доступа: https://nctr.pmel.noaa.gov/Pdf/brochures/sift_Brochure.pdf.

Wang X., Power, W. L. COMCOT: A Tsunami Generation Propagation and Run-Up Model. GNS Science. Lower Hutt City, New Zealand; 2011.

Shuto N., Goto C., Imamura F. Numerical Simulation as a Means of Warning for Near Field Tsunamis. Coast. Eng. Jpn. 1990;33:173–193.

Yalciner A. C., Alpar B., Altinok Y. et al. Tsunamis in the Sea of Marmara: Historical Documents for the Past, Models for Future. Mar. Geol. 2002;190:445–463.

Zaytsev A., Kurkin A., Pelinovsky E. et al. Numerical Tsunami Model NAMI_DANCE. Sci. Tsunami Hazards. 2019;38:151–168.

Lax P. D., Richtmyer R. D. Survey of the Stability of Linear Finite Difference Equations. Commun. Pure Appl. Math. 1956;9:267–293.

Liang Q., Hou J., Amouzgar R. Simulation of Tsunami Propagation Using Adaptive Cartesian Grids. Coastal Engineering J. 2015;57(4):150729195708001. DOI: 10.1142/S0578563415500163.

Lavrentiev M., Lysakov K., Marchuk An. et al. Fundamentals of Fast Tsunami Wave Parameter Determination Technology for Hazard Mitigation. Sensors. 2022;22:7630. DOI: https://doi.org/10.3390/s22197630.

Stoker J. J. Water Waves. The Mathematical Theory with Applications. New York: Interscience Publishers; 1957.

Kowalik Z., Murty T. S. Numerical Modeling of Ocean Dynamics. World Scientific; 1993.

MacCormack R. W., Paullay A. J. Computational Efficiency Achieved by Time Splitting of Finite Difference Operators. AIAA. 1972:72–154.

Lavrentiev M., Lysakov K., Marchuk An. et al. Hardware/Software Solution for Low Power Evaluation of Tsunami Danger. J. Low Power Electronics and Appl. 2022;12(1):6. DOI: 10.3390/jlpea12010006.

Lavrentiev M., Marchuk An., Oblaukhov K. Low Power Computation of Transoceanic Wave Propagation for Tsunami Hazard Mitigation. Ocean Modelling. 2024;192(102459). DOI: 10.1016/j.ocemod.2024.102459.

Marchuk A. G. Estimating Tsunami Wave Height over a Sloping Bottom in the Ray Approximation. Numerical Analysis and Applications. 2015;8(4):304–313.

Lavrentiev M., Marchuk An., Oblaukhov K. et al. Comparative Testing of MOST and Mac-Cormack Numerical Schemes to Calculate Tsunami Wave Propagation. Journal of Physics: Conference series. 2020;1666(1):012028. DOI: 10.1088/1742-6596/1666/1/012028.

GEBCO Homepage. Режим доступа: https://www.gebco.net/data_and_products/gridded_bathymetry_data/.

NOAA National Centers for Environmental Information. Режим доступа: https://www.ncei.noaa.gov/products/etopo-global-relief-model#, last accessed 2024/09/15.

Smith W. H. F., Sandwell D. T. Conventional Bathymetry, Bathymetry from Space, and Geodetic Altimetry. Oceanography. 2004;17(1):8–3. DOI: https://doi.org/10.5670/oceanog.2004.63.

Scripps Institution of Oceanography, University of California San Diego. Режим доступа: https://topex.ucsd.edu/WWW_html/srtm30_plus.html.

JODC Data On-line Service System. Режим доступа: https://www.jodc.go.jp/vpage/depth500_file.html.

Lavrentiev M., Lysakov K., Marchuk An. et al. FPGA Based Tsunami Wave Propagation Calculator. Journal of Physics: Conference Series. 2021;1789(1):012011.

Downloads

Download data is not yet available.