Critical Variables of the Spin Model on The Complete Graph in the Presence of Antiferromagnetic Interaction
PDF (Russian)

Keywords

phase transitions
layered media
critical temperature
antiferromagnetic material
complete graph

How to Cite

1.
Kryzhanovsky B.V., Egorov V.I. Critical Variables of the Spin Model on The Complete Graph in the Presence of Antiferromagnetic Interaction // Russian Journal of Cybernetics. 2023. Vol. 4, № 3. P. 7-18. DOI: 10.51790/2712-9942-2023-4-3-01.

Abstract

we studied the spin system on the complete graph consisting of two interacting subensembles. The spins that belong to the same ensemble have ferromagnetic interactions; the inter-ensemble interactions are antiferromagnetic. We introduced the “balanced system” term, which defines the equality of the number of the nearest neighbors for spins of different sub-ensembles. It is shown that the critical variables and the scaling function are different from the classical ones of the unbalanced system. These results are confirmed by the Monte-Carlo simulation of the 3D layered spin model for both balanced and unbalanced systems.

https://doi.org/10.51790/2712-9942-2023-4-3-01
PDF (Russian)

References

Ilkovič V. Magnetic Properties of Ising-Type Ferromagnetic Films with a Sandwich Structure. Physica Status Solidi (b). 1998;207(1):131–137.

Kuzniak-Glanowska E., Konieczny P., Pełka R., Muzioł T. M., Kozieł M., Podgajny R. Engineering of the XY Magnetic Layered System with Adeninium Cations: Monocrystalline Angle-Resolved Studies of Nonlinear Magnetic Susceptibility. Inorganic Chemistry. 2021;60(14):10186–10198.

Grünberg P. Layered Magnetic Structures in Research and Application. Acta Materialia. 2000;48(1):239–251.

Taborelli M. et al. Magnetic Coupling of Surface Adlayers: Gd on Fe (100). Physical Review Letters. 1986;56(26):2869.

Camley R. E., Tilley D. R. Phase Transitions in Magnetic Superlattices. Physical Review B. 1988;37(7):3413.

Camley R. E. Properties of Magnetic Superlattices with Antiferromagnetic Interfacial Coupling: Magnetization, Susceptibility, and Compensation Points. Physical Review B. 1989;39(16):12316.

Lipowski A. Critical Temperature in the Two-Layered Ising Model. Physica A: Statistical Mechanics andits Applications. 1998;250(1–4):373–383.

Horiguchi T., Lipowski A., Tsushima N. Spin-32 Ising Model and Two-Layer Ising Model. Physica A:Statistical Mechanics and its Applications. 1996;224(3–4):626–638.

Diaz I. J. L., Branco N. S. Monte Carlo Simulations of an Ising Bilayer with Non-Equivalent Planes.Physica A: Statistical Mechanics and its Applications.2017;468:158–170.

Diaz I. J. L., Branco N. S. Monte Carlo Study of an Anisotropic Ising Multilayer with Antiferromagnetic Interlayer Couplings. Physica A: Statistical Mechanics and its Applications. 2018;490:904–917.

Gharaibeh M. et al. Compensation and Critical Behavior of Ising Mixed Spin (1-1/2-1) Three Layers System of Cubic Structure. Physica A: Statistical Mechanics and its Applications. 2020;550:124–147.

Drovosekov A. B., Kholin D. I., Kreinies N. M. Magnetic Properties of Layered Ferrimagnetic Structures Based on Gd and Transition 3d Metals. Journal of Experimental and Theoretical Physics. 2020;131:149–159.

Telford E. J. et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the vander Waals Semiconductor CrSBr. Advanced Materials. 2020;32(37):2003240.

Wang Y. et al. Topological Semimetal State and Field-Induced Fermi Surface Reconstruction in the Antiferromagnetic Monopnictide NdSb. Physical Review B. 2018;97(11):115133.

Hansen P. L. et al. Two Coupled Ising Planes: Phase Diagram and Interplanar Force.Journal of statisticalphysics. 1993;73:723–749.

Ferrenberg A. M., Landau D. P. Monte Carlo Study of Phase Transitions in Ferromagnetic Bilayers. Journal of applied physics. 1991;70(10):6215–6217.

Baxter R. J.Exactly Solved Models in Statistical Mechanics. London; Academic Press; 1982.

Крыжановский Б. В., Литинский Л. Б. Обобщенное уравнение Брегга–Вильямса для систем с произвольным дальнодействием. Доклады АН. 2014;459(6):680–684.

Binder K. Finite Size Scaling Analysis of Ising Model Block Distribution Functions. Zeitschrift für PhysikB Condensed Matter. 1981;43:119–140.

Downloads

Download data is not yet available.