Constructing the Euler–Lagrange Equation Using the Poincaré Lemma
PDF (Russian)

Keywords

Euler–Lagrange equation
1-DOF dynamic system
Poincaré lemma
simplest (basic) differential forms

How to Cite

1.
Koshcheev V.P. Constructing the Euler–Lagrange Equation Using the Poincaré Lemma // Russian Journal of Cybernetics. 2025. Vol. 6, № 2. P. 40–43.

Abstract

we demonstrate that the Euler–Lagrange equation for a dynamical system with one degree of freedom can be derived using the Poincaré lemma. In the appendix, we prove the theorem on the existence and uniqueness of the skew-symmetry property of the simplest (basic) differential forms.

PDF (Russian)

References

Райдер Л. Квантовая теория поля. ПЛАТОН; 1998.

Яковлев Г. Н. Лекции по математическому анализу. Ч. 2. М.: Физматлит; 2004.

Зорич В. А. Математический анализ: в 2-х частях. Часть 2. М.: Наука; 1984.

Кощеев В. П. К задаче построения определителя Якоби. Успехи кибернетики. 2021;2(4):87–89. DOI: 10.51790/2712-9942-2021-2-4-10.

Downloads

Download data is not yet available.