Quantum Singular-Value Decomposition
PDF (Russian)

Keywords

matrix decomposition
density matrix
amplitude
interference
phase
complex neural networks

How to Cite

1.
Surov I.A. Quantum Singular-Value Decomposition // Russian Journal of Cybernetics. 2025. Vol. 6, № 1. P. 84–93.

Abstract

real-valued calculations in artificial neural networks captures the amplitudes of neural signals but neglects their phases, which are critical parameters controlling the composition of cognitive waves in natural brains. To address this limitation, we present a complex-valued modification of singular matrix decomposition, a conceptual precursor to the tensor algebra underlying modern neural networks. In this approach, we generalize the diagonal matrix of singular values to a self-adjoint complex matrix, analogous to the density matrix in quantum theory. Within low-dimensional “semantic” spaces, the additional non-diagonal elements of the complex matrix account for the non-stationary logic of the cognitive systems that generate the data. As in the standard formulation, the density matrix is sandwiched between two orthogonal real-valued matrices, unfolding semantic regularities into the space of observable events. The squared modulus of the resulting set of complex-valued amplitudes then produces observable real-valued data, following the quantum-mechanical Born rule. By introducing a minor increase in the number of parameters, our method significantly enhances the precision of classical singular value decomposition. This improvement highlights the efficiency of wave-like and quantum-inspired principles in natural cognition, as expressed in the proposed algebra. The method provides new opportunities for semantic data analysis and offers pathways to advance modern neural network architectures.

PDF (Russian)

References

Bressloff P. C. Waves in Neural Media: From Single Neurons to Neural Fields. Springer; New York; 2014. DOI: 10.1007/978-1-4614-8866-8.

Barrett T. W. The Cortex as Interferometer: The Transmission of Amplitude, Frequency and Phase in Cortical Structures. Neuropsychologia. 1969;7(2):135–48.

Суров И. А. Логика множеств и логика волн в когнитивно-поведенческом моделировании. Информационные и математические технологии в науке и управлении. 2023;32(4):51–66. DOI: 10.25729/ESI.2023.32.4.005.

Khrennikov A. Yu. Quantum-Like Model of Processing of Information in the Brain Based on Classical Electromagnetic Field. BioSystems. 2011;105(3):250–62. DOI: 10.1016/j.biosystems.2011.05.014.

Khrennikov A., Basieva I., Pothos E. M., Yamato I. Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States. Scientific Reports. 2018;8(1):16225. DOI: 10.1038/s41598-018-34531-3.

Surov I. A., Semenenko E., Platonov A. V., Bessmertny I. A., Galofaro F., Toffano Z., Khrennikov A. Yu., Alodjants A. P. Quantum Semantics of Text Perception. Scientific Reports. 2021;11(1):4193. DOI: 10.1038/s41598-021-83490-9.

Краснов А. Е., Головкин М. Е., Герасимова В. И. Применение причинных преобразований в распознавании сигналов и изображений. XIV Всероссийское совещание по проблемам управления (ВСПУ2024) : сборник научных трудов, 17–20 июня 2024 г., М.: Ин-т проблем упр. им. В.А. Трапезникова Рос. акад. наук; 2024:3186–3190.

Busemeyer J. R., Fakhari P., Kvam P. Neural Implementation of Operations Used in Quantum Cognition. Progress in Biophysics and Molecular Biology. 2017;130:53–60.

Scholes G. D. Quantum-Like States on Complex Synchronized Networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2024;480(2295):20240209.

Khrennikov A. Yu., Ozawa M., Benninger F., Shor O. Coupling Quantum-Like Cognition with the Neuronal Networks within Generalized Probability Theory. 2024. preprint arXiv:2411.00036v1. DOI: 10.48550/arXiv.2411.00036.

Кузнецов О. П. Неклассические парадигмы в искусственном интеллекте. Теория и системы управления. 1995;5:3–23.

Roli A., Jaeger J., Kauffman S. A. How Organisms Come to Know the World: Fundamental Limits on Artificial General Intelligence. Frontiers in Ecology and Evolution. 2022;9:806283. DOI: 10.3389/fevo.2021.806283.

Суров И. А. Матрично-кубитный алгоритм семантического анализа вероятностных данных. Моделирование и анализ информационных систем. 2024;31(3):280–93. DOI: 10.18255/1818-1015-2024-3-280-293.

Kozhisseri S., Surov I. A. Quantum-Probabilistic SVD: Complex-Valued Factorization of Matrix Data. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2022;22(3):567–73. DOI: 10.17586/2226-1494-2022-22-3-567-573.

Eckart C., Young G. The Approximation of One Matrix by Another of Lower Rank. Psychometrica. 1936;1(3):211–218. DOI: 10.1007/2FBF02288367.

Stewart G. W. On the Early History of the Singular Value Decomposition. SIAM Review. 1993;35(4):551– 566. DOI: 10.1137/1035134.

Landauer T. K., Dumais S. T. A Solution to Plato’s Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. Psychological Review. 1997;104(2):211–240.

Mikolov T., Sutskever I., Chen K., Corrado G., Dean J. Distributed Representations of Words and Phrases and Their Compositionality. NIPS’13. Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013.

Landauer T. K., McNamara D. S., Dennis S., Kintsch W., editors. Handbook of Latent Semantic Analysis. Routledge. 2011.

Газя Г. В., Газя Н. Ф., Еськов В. В., Манина Е. А. Непредсказуемость и неопределенность создают реальную Complexity. Успехи кибернетики. 2024;5(2):97–102. DOI: 10.51790/2712-9942-2024-5-2-11.

Khrennikov A. Yu. Interpretations of Probability. Berlin, New York: De Gruyter; 2009. 219 p. DOI: 10.1515/9783110213195.

Khrennikov A. Yu. Ubiquitous Quantum Structure: From Psychology to Finance. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. DOI: 10.1007/978-3-642-05101-2.

Haven E., Khrennikov A. The Palgrave Handbook of Quantum Models in Social Science. London: Macmillan Publishers Ltd. 2017. 365 p. DOI: 10.1057/978-1-137-49276-0.

Суров И. А. Квантовая теория: методология и математика управления. Труды XIII ВСПУ. 2019:1589–1593. DOI: 10.25728/vspu.2019.1589.

Nottale L. Scale Relativity: A Fractal Matrix for Organization in Nature. Part 2. Electronic Journal of Theoretical Physics. 2007;4(16):187–274.

Nottale L., Auffray C. Scale Relativity Theory and Integrative Systems Biology: 2. Macroscopic Quantum-Type Mechanics. Progress in Biophysics and Molecular Biology. 2008;97(1):115–157.

Head J. D., Zerner M. C. A Broyden—Fletcher—Goldfarb—Shanno Optimization Procedure for Molecular Geometries. Chemical Physics Letters. 1985;122(3):264–270.

Gommers R., et al. SciPy 1.9.0 Release Notes. 2022. DOI: 10.5281/zenodo.6940349.

Суров И. А. Процессная семантика комплексных чисел. Математические структуры и моделирование. 2023;4:71–84. DOI: 10.24147/2222-8772.2023.4.71-84.

Кедрин В. С., Сальникова М. К. Прогнозирование нестационарных макроэкономических процессов с помощью методик сингулярного разложения и искусственного интеллекта. Труды Братского государственного университета. Серия: Естественные и инженерные науки — развитию регионов. 2007;2:38–41. Режим доступа: https://www.elibrary.ru/item.asp?id=13362489.

Ильин П. Л., Самойлова Т. А. Сингулярное разложение пространственных матриц. Современные информационные технологии и ИТ-образование. 2022;18(3):578–88. DOI: 10.25559/SITITO.18.202203.578-588.

Wang X., Gu L., Lee H., Zhang G. Quantum Context-Aware Recommendation Systems Based on Tensor Singular Value Decomposition. Quantum Information Processing. 2021;20(5):190. DOI: 10.1007/s11128-021-03131-y.

Lloyd S., Mohseni M., Rebentrost P. Quantum Principal Component Analysis. Nature Physics. 2014;10(9):631–633. DOI: 10.1038/NPHYS3029.

Rebentrost P. et al. Quantum Singular-Value Decomposition of Nonsparse Low-Rank Matrices. Phys. Rev. 2018;97(1):012327. DOI: 10.1103/PhysRevA.97.012327.

Gilyén A., Su Y., Low G. H., Wiebe N. Quantum Singular Value Transformation and Beyond: Exponential Improvements for Quantum Matrix Arithmetics. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. 2019:193–204. DOI: 10.1145/3313276.3316366.

Spall J., Guo X., Barrett T. D., Lvovsky A. I. Fully Reconfigurable Coherent Optical Vector-Matrix Multiplication. Optics Letters. 2020;45(20):5752. DOI: 10.1364/OL.401675.

Wang X., Song Z., Wang Y. Variational Quantum Singular Value Decomposition. Quantum. 2021;5:483. DOI: 10.22331/q-2021-06-29-483.

Jia Z., Yi B., Zhai R., Wu Y., Guo G., Guo G. Quantum Neural Network States: A Brief Review of Methods and Applications. Adv Quantum Tech. 2019;2(7–8):1800077. DOI: 10.1002/qute.201800077.

Ваулин Н. В. Регуляризация сверточной нейронной сети сингулярным разложением для обучения на малых выборках. Интеллектуальные системы: Теория и приложения. 2022;26(4):20–36.

Melnikov A., Kordzanganeh M., Alodjants A. P., Lee R. K. Quantum Machine Learning: from Physics to Software Engineering. Advances in Physics X. 2023;8(1). DOI: 10.1080/23746149.2023.2165452.

Downloads

Download data is not yet available.