Abstract
in a hydromagnetic dynamo, the self-excitation mechanism generates the magnetic field by amplifying a weak initial field through specific configurations of conductive fluid flows. These flows sustain the field in a stationary or quasi-stationary state, preventing its attenuation. Demonstrating this amplification effect requires computational magnetohydrodynamics methods. In this paper, we analyze a geodynamo model with vacuum boundary conditions for the magnetic field at the outer boundary of a spherical layer. The dimensionless parameters that determine the problem are: Pr is the Prandtl number, Pm is the magnetic Prandtl number, E is the Ekman number, and Ra* is the modified Rayleigh number. The initial level of the magnetic field depends on the parameter Λ, the Elsasser number. We conducted computational experiments using our MHD code, which we adapted for hybrid computing systems with graphics processors. Our code employs a finite-volume method to solve resistive magnetohydrodynamics problems for a viscous incompressible fluid. A weak (Λ = 10−2 ) homogeneous magnetic field directed along the axis of rotation of the spherical layer was considered as the initial magnetic field. When conducting computational experiments, for the values of the parameters defining the problem Pr = 1, Pm = 5, E = 5 · 10−4 , Ra* = 200, we obtained a quasi-stationary solution in which the initial level of the magnetic field energy increases by three orders of magnitude during the generation process. In the obtained solution, the temperature and velocity fields are symmetrical relative to the equatorial plane, and the dipole component predominates in the external magnetic field.
References
Christensen U. R. et al. A Numerical Dynamo Benchmark. Physics of the Earth and Planetary Interiors. 2001;128(1–4):25–34. DOI: 10.1016/S0031-920100275-8.
Matsui H. et al. Performance Benchmarks for a Next Generation Numerical Dynamo Model. Geochemistry, Geophysics, Geosystems. 2016;17:1586–1607. DOI: 10.1002/2015GC006159.
Marti P. et al. Full Sphere Hydrodynamic and Dynamo Benchmarks. Geophysical Journal International. 2014;197:119–134. DOI: 10.1093/gji/ggt518.
Jackson A. et al. A Spherical Shell Numerical Dynamo Benchmark with Pseudo-Vacuum Magnetic Boundary Conditions. Geophysical Journal International. 2014;196:712–723. DOI: 10.1093/gji/ggt425.
Sarson G. R., Jones C. A., Zhang K. Dynamo Action in a Uniform Ambient Field. Physics of the Earth and Planetary Interiors. 1999;111(1–2):47–68. DOI: 10.1016/S0031-920100145-9.
Sakuraba A., Kono M. Effect of a Uniform Magnetic Field on Nonlinear Magnetocenvection in a Rotating Fluid Spherical Shell. Geophysical and Astrophysical Fluid Dynamics. 2000;92(3–4):255–287. DOI: 10.1080/03091920008203718.
Ландау Л. Д., Лифшиц Е. М. Гидродинамика. М.: Физматлит; 2001. 731 с.
Бычин И. В., Гореликов А. В., Ряховский А. В. Схема дискретизации уравнения индукции на смещенных сетках в ортогональных криволинейных координатах. Успехи кибернетики. 2022;3:60–73. DOI: 10.51790/2712-9942-2022-3-2-8.
Iskakov A. B., Descombes S., Dormy E. An Integro-Differential Formulation for Magnetic Induction in Bounded Domains: Boundary Element–Finite Volume Method. Journal of Computational Physics. 2004;197:540–554. DOI: 10.1016/j.jcp.2003.12.008.
Бычин И. В., Гореликов А. В., Ряховский А. В. Численное решение начально-краевой задачи с вакуумными граничными условиями для уравнения индукции магнитного поля в шаре. Вестник Томского государственного университета. Математика и механика. 2020;64:15–30. DOI: 10.17223/19988621/64/2.
Ansorge R. Programming in Parallel with CUDA: A Practical Guide. Cambridge: Cambridge University Press; 2022. 395 p.
Mattson T. G., He Y., Koniges A. E. The OpenMP Common Core: Making OpenMP Simple Again. Cambridge: The MIT Press; 2019. 295 p.
Patankar S. V. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation; 1980. 214 p.
Versteeg H. K., Malalasekera W. An Introduction to Computational Fluid Dynamics. Harlow: Pearson Education Limited; 2007. 503 p.
Leonard B. P. A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation. Computer Methods in Applied Mechanics and Engineering. 1979;19:59–98. DOI: 10.1016/0045-782590034-3.
Hayase T., Humphrey J. A. C., Greif R. A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures. Journal of Computational Physics. 1992;98:108–118. DOI: 10.1016/0021-999190177-Z.
Issa R. I. Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting. Journal of Computational Physics. 1986;62:40–65. DOI: 10.1016/0021-999190099-9.
Issa R. I., Gosman A. D., Watkins A. P. The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme. Journal of Computational Physics. 1986;62:66–82. DOI: 10.1016/0021-999190100-2.
Бычин И. В. Тестирование магнитогидродинамического кода на задачах естественной конвекции и геодинамо. Успехи кибернетики. 2021;2:6–13. DOI: 10.51790/2712-9942-2021-2-1-1.
Бычин И. В., Гореликов А. В., Ряховский А. В. Тестирование программного комплекса для численного моделирования теплообмена и течения жидкости в сферических слоях. Вестник кибернетики. 2013;12:81–88.
Галкин В. А., Гореликов А. В., Бычин И. В., Дубовик А. О., Ряховский А. В. Тестирование алгоритмов вычислительной магнитной гидродинамики на задаче с точным решением. Успехи кибернетики. 2020;1:29–37. DOI: 10.51790/2712-9942-2020-1-4-4.