Abstract
this study discusses a depth-averaged model of viscous flow motion used in computer simulation of volcanic lava propagation. The mathematical properties of the model, its approximation methods, and numerical solution algorithms fine-tuned for modern hybrid computing clusters are presented. The mathematical model is a system of hyperbolic equations that simulate the laws of conservation of mass and momentum in the thin layer approximation. The terrain and rheological properties of the liquid and substance extrusion rate from the crater are specified as inhomogeneous members of the system. The proposed mathematical model offers high computational efficiency due to its two-dimensionality and the inclusion of free surface height as a variable in the equations. The paper also discusses parallel computer implementations of the model with OpenFOAM (MPI), OpenMP, and OpenACC. The codes run on CPU/GPU clusters with shared and distributed memory and Linux OS. The codes were verified using the analytical solution of the problem. We also profiled the codes for multi-core CPUs with shared memory.
References
Costa A., Macedonio G. Numerical Simulation of Lava Flows Based on Depth-Averaged Equations. Geophysical Research Letters. 2005;32:L05304. DOI: doi.org/10.1029/2004GL021817.
Ferrari S., Saleri F. A New Two-Dimensional Shallow Water Model Including Pressure Effects and Slow Varying Bottom Topography. ESAIM Math. Modell. Numer. Anal. 2004;38:211–234. DOI: doi.org/10.1051/m2an:2004010.
Jasak H. OpenFOAM: Open Source CFD in Research and Industry. International Journal of Naval Architecture and Ocean Engineering 2009;1(2):89-94. DOI: doi.org/10.2478/IJNAOE-2013-0011.
LeVeque R. J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press; 2002. 580 p.
Huppert H. E. The Propagation of Two-Dimensional and Axisymmetric Viscous Gravity Currents Over a Rigid Horizontal Surface. J. of Fluid Mechanics. 1982;121:43–58. DOI: 10.1017/S0022112082001797.
Короткий И. А., Цепелев И. А. Численное моделирование извержения вулкана Этна с применением усредненной по глубине модели потока лавы. Выч. механика сплошных сред. 2024;17(3):362–374. DOI: 10.7242/1999-6691/2024.17.3.30.
Snir M., Otto S., Huss-Lederman S., Walker D., Dongarra J. MPI: The Complete Reference. Cambridge: The MIT Press; 1995. 350 p.
Вабищевич П. Н., Первичко В. А., Самарский А. А., Чуданов В. В. Нелинейные регуляризованные разностные схемы для многомерного уравнения переноса. Ж. вычисл. матем. и матем. физ. 2000;40(6):900–907.
Chapman B., Jost G., van der Pas R. Using OpenMP Portable Shared Memory Parallel Programming. Cambridge: The MIT Press; 2007. 384 p.
Farber R. Parallel Programming with OpenACC (1st. ed.). Cambridge: Morgan Kaufmann Publishers; 2016. 296 p.