Abstract
this study analyzes the thermal orientation effect using a 2D simplified dynamic model of a liquid crystal with acoustic approximation. We assumed that the effect occurs when one of the boundaries of a rectangular liquid crystal layer is heated. To solve the system of equations, we used a two-cycle splitting method of splitting with respect to spatial variables in combination with a finite-difference scheme of Godunov gap decay for the acoustic equations and the Ivanov scheme with controlled energy dissipation for the heat conductivity equation. This combination of finite-difference methods enables the analysis of the thermomechanical processes with the same time and space steps satisfying the Courant-Friedrichs-Lewy criterion. We implemented the numerical algorithm as a parallel program in C++. For parallelization, we used NVIDIA graphic accelerators and CUDA technology. The analysis showed the impossibility of observing the re-orientation effect in liquid crystal molecules caused by temperature for the given simplified model with acoustic approximation. We concluded that when taking into account the surface tension forces, this effect will be observed in the model used.
References
Blinov L. M. Structure and Properties of Liquid Crystals. Heidelberg — New York — Dordrecht — London: Springer; 2011. 439 p. DOI: 10.1007/978-90-481-8829-1
Gennes P. G. de, Prost J. The Physics of Liquid Crystals. New York: Oxford University Press; 1993. 597 p.
Ericksen J. L. Conservation Laws for Liquid Crystals. Trans. Soc. Rheol. 1961;5:23–34. DOI: 10.1122/1.548883.
Leslie F. M. Some Constitutive Equations for Liquid Crystals. Arch. Ration. Mech. Anal. 1968;28:265– 283. DOI: 10.1007/BF00251810.
Трашкеев С. И., Бритвин А. В. Термоориентационный эффект в нематическом жидком кристалле. Журн. техн. физ. 2011;81(6):1–7.
Садовский В. М., Садовская О. В., Смолехо И. В. Моделирование динамики жидкого кристалла под действием слабых возмущений. ПМТФ. 2021;62(1):193–206.
Cosserat E. Theorie des Corps D´ eformables.´ Chwolson’s Traite Physique.´ 1909; 2nd ed.: 953–1173.
Smolekho I. V. Analysis of the Unstable State of a Nematic Liquid Crystal Based on a Simplified Dynamic Model. Journal of Siberian Federal University. Mathematics & Physics. 2024;17(2):272–281.
Годунов С. К., Забродин А. В., Иванов М. Я. и др. Численное решение многомерных задач газовой динамики. Москва: Наука; 1976. 400 с.
Иванов Г. В., Волчков Ю. М., Богульский И. О. и др. Численное решение динамических задач упругопластического деформирования твердых тел. Новосибирск: Сиб. унив. изд-во; 2002. 352 с.
Farber R. CUDA Application Design and Development. Amsterdam — Boston — London — New York — Oxford — Paris — San Francisco — Singapore — Sydney — Tokyo: Elsevier; 2011. 315 p.
Skarp K., Lagerwall S., Stebler B. Measurement of hydrodynamic parameters for nematic 5CB. Mol. Cryst. Liq. Cryst. 1980;60(3):215–236. DOI 10.1080/00268948008072401.