Simulation of the Evolution of Disturbances in an Evaporating Liquid Film
PDF (Russian)

Keywords

liquid film
evaporation
instability
Marangoni number

How to Cite

1.
Prokudina L.A. Simulation of the Evolution of Disturbances in an Evaporating Liquid Film // Russian Journal of Cybernetics. 2024. Vol. 5, № 4. P. 81-87. DOI: 10.51790/2712-9942-2024-5-4-11.

Abstract

we present a nonlinear simulation describing the state of a viscous liquid film’s free surface during gravitational flow and heat and mass transfer processes. It is a nonlinear fourth-order partial differential equation that contains both spatial and time derivatives. The model coefficients include surface tension, thermocapillary forces, and evaporation. We converted it to a difference equation, an analog of the initial simulation of the liquid film’s free surface. We developed computational algorithms to study the instability and free-surface behavior of a liquid film’s wave flow at moderate Reynolds numbers. We conducted computational experiments on the nonlinear evolution of disturbances and identified unstable flow regimes in a liquid water film, particularly those with Marangoni instability. We present the results of numerical simulation of the nonlinear evolution of disturbances and the formation of the evaporating liquid film’s free surface state, which can be applied to the design and upgrades of manufacturing equipment and processes.

https://doi.org/10.51790/2712-9942-2024-5-4-11
PDF (Russian)

References

Алексеенко С. В., Накоряков В. Е., Покусаев Б. Г. Волновое течение пленок жидкости. Новосибирск: ВО «Наука». Сибирская издательская фирма; 1992. 256 с.

Воронцов Е. Г., Тананайко Ю. М. Теплообмен в жидкостных пленках. Киев: Техника; 1972. 196 с.

Холпанов Л. П., Шкадов В. Я. Гидродинамика и тепломассообмен с поверхностью раздела. М.: Наука; 1990. 271 с.

Shkadov V. Ya. Wave Flow Regimes of a Thin Layer of Viscous Fluid Subject to Gravity. Fluid Dynamics. 1967;2(1):29–34.

Demekhin E. A., Kaplan M. A., Shkadov V. Ya. Mathematical Models of the Theory of Viscous Liquid Films. Fluid Dynamics. 1987;22(6):885–893.

Актершев С. П., Алексеенко С. В. Волновое течение пленки конденсата. Теплофизика высоких температур. 2014;1:84–92.

Актершев С. П., Алексеенко С. В. Волновое течение испаряющейся пленки жидкости. Известия Томского политехнического университета. 2014;324(4):6–14.

Бурмистрова О. А. Устойчивость вертикальной пленки жидкости с учетом эффекта Марангони и теплообмена с окружающей средой. Прикладная механика и техническая физика. 2014;3:17–25.

Subramaniam V., Garimella S. Numerical Study of Heat and Mass Transfer in Lithium Bromide-Water Falling Films and Droplets. International Journal of Refrigeration. 2014;40:211–226.

Rahimzadeh A., Ahmadian-Yazdi M.-R., Eslamian M. Experimental Study on the Characteristics of Capillary Surface Waves on a Liquid Film on an Ultrasonically Vibrated Substrate. Fluid Dynamics Research. 2018;6:065510.

Prokudina L. A. Numerical Simulation of Effect of Temperature Gradients on Flow of Liquid Film in Heat and Mass Transfer Devices. Global Smart Industry Conference. Chelyabinsk; 2018. DOI: 10.1109/GloSIC.2018.8570098.

Prokudina L. A. Influence of Surface Tension Inhomogeneity on the Wave Flow of a Liquid Film. Journal of Engineering Physics and Thermophysics. 2014;87(1):165–173.

Prokudina L. A., Vyatkin G. P. Instability of a Nonisothermal Liquid Film. Doklady Physics. 1998;43(10):652–654.

Berg J. C., Acrivos A. The Effect of Surface Active Agents on Convection Cells Induced by Surface Tension. Chemical Engineering Science. 1965;20(8):737–745.

Linde H., Schwarz P., Wilke H. Dissipative Structures and Nonlinear Kinetics of the MarangoniInstability. Lecture Notes in Physics. 1979;105:75–120.

Schwarz P., Bielcki J., Linde H. Origin and Behavior of a Dissipative Structure of the Marangoni Instability. Zeitschrift fur Physikalische Chemie¨ . 1985;266(4):731–739.

Капица П. Л. Волновое течение тонких слоев вязкой жидкости. Журнал экспериментальной и теоретической физики. 1948;18:3–28.

Прокудина Л. А. Моделирование влияния градиентов температуры на состояние свободной поверхности жидкой пленки. Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование. 2014;2:118–123.

Downloads

Download data is not yet available.