Simulation of Deflagration-to-Detonation in Axisymmetrical Channels Using a Kinetics Model of the Multistage Hydrogen-Air Mixture Reaction
PDF (Russian)

Keywords

deflagration-to-detonation period
deflagration-to-detonation transition
system of stiff differential equations
branching chain reactions

How to Cite

1.
Martyushov S.N., Ryzhova T.M. Simulation of Deflagration-to-Detonation in Axisymmetrical Channels Using a Kinetics Model of the Multistage Hydrogen-Air Mixture Reaction // Russian Journal of Cybernetics. 2024. Vol. 5, № 4. P. 51-58. DOI: 10.51790/2712-9942-2024-5-4-07.

Abstract

we investigated the deflagration-to-detonation process in hydrogen-air mixtures, a field extensively studied due to the energy-wise advantages of the detonation fuel cycle over conventional fuel cycles. Hydrogen’s potential as a fuel has made the development of hydrogen detonation engines a highly relevant research problem. In lab experiments, deflagration typically initiates due to increases in energy and temperature, often triggered by successive electric discharges or interactions with obstacles in channels. Many studies have simulated the behavior of reacting gas flows in channels with obstacles or the initiation of deflagration via hot spots as analogs to electric discharges.
In this study, we modified an algorithm originally introduced by the author to calculate the initiation of deflagration in hydrogen-air mixtures. The modification involved implementing a strict counterflow version of the Chakravarthy-Osher difference scheme, which reduced oscillations in the mixture component concentrations. Using this modified algorithm, we simulated the initiation of deflagration of hydrogen-air mixtures in channels with obstacles.
For the simulation of the kinetic processes, we employed two algorithms to solve the system of kinetic equations. The first algorithm solves the full system of kinetic equations, while the second is based on the branching chain reaction theory proposed by N. Semenov. The results of these simulations demonstrate the reliability of the branching chain reaction algorithm for the simulation of deflagration in hydrogen-air mixtures, aligning well with the results obtained for the full multistage kinetic system.

https://doi.org/10.51790/2712-9942-2024-5-4-07
PDF (Russian)

References

Левин В. А., Нечаев Ю. Н., Тарасов А. И. Контроль в процессах детонации. Ред. Г. Рой. М.: Elex-KM; 2000. С. 197–201.

Войцеховский Б. В. Стационарная детонация. Доклады Академии наук. 1959;129:1251–1256.

Zhdan S. A., Bykovskii F. A., Vedernikov F. F. Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen-Oxygen Mixture. Combustion, Explosion and Shock Waves. 2007;43:449–455.

Taki S., Fujiwara T. Numerical Analysis of Two-Dimensional Non Steady Detonations. AIAA Jornal. 1978;16:73–78.

Liberman M. A. Introduction to Physics and Chemistry of Combustion. Berlin-Heudelberg: SpringerVerlag; 2008. 534 p.

Денисов Е. Т., Саркисов О. М., Лихтенштейн Г. И. Химическая кинетика. М.: Химия; 2000. 568 c.

Семенов Н. Н. Самовоспламенение и цепные реакции. Успехи химии. 1967;36(1):3–22.

Saeid M. H., Khadem J., Emami S., Ghodrat M. Effect of Diffusion Time on the Mechanism of Deflagration to Detonation Transition in an Inhomogeneous Mixture of Hydrogen-Air. International Journal of Hydrogen Energy. 2022;47(20):11052–67.

Liu D., Liu Z., Xiao H. Flame Acceleration and Deflagration-to-Detonation Transition in Narrow Channels Filled with Stoichiometric Hydrogen-Air Mixture. International Journal of Hydrogen Energy. 2022;47:11052–67.

Martyushov S. N. Numerical Simulation of Deflagration in Hydrogen-Air Gas Mixes. Journal of Physics: Conference Series. 2021;2124.

Martyushov S. N. Construction of Calculation Grids on the Basis of Poisson Equation Decision. 15th IMACS World Congress on Scientific Computation, Modelling and Appl.Maths. Proc. Berlin; 1997. Р. 191–195.

Thompson J. F., Varsi J., Mastin C. W. Grid Generation: Foundations and Applications. North-Holland; 1982. 658 p.

Холодов А. С., Лобанов А. И., Евдокимов А. В. Разностные схемы для решения жестких обыкновенных дифференциальных уравнений в пространстве неопределенных коэффициентов. М.: Изд-во МФТИ; 1991. 110 c.

Ibragimova L. B., Smechov G. D., Shatalov O. P. Recommended Rate Constants of Chemical Reactions in an H2-O2 Gas Mixture with Electronucally Excited Species O2 , O, OH Involved. Moscow: Institutе of Mechanics of Lomonosov Moscow State University; 2003. 25 p.

Roe P. L., Pike J. Efficient Construction and Utilisation of Approximate Riemann Solutions. In Computing Methods in Applied Science and Engineering. North-Holland; 1984.

Chakravarthy S. R., Osher S. Computing with High-resolution Upwind Schemes for Hyperbolic Equations. Lectures in Applied Mathematics. 1985;22(1):57–86.

Куликовский А. Г., Свешникова Е. И., Чугайнова А. П. Математические методы изучения разрывных решений нелинейных гиперболических систем уравнений. Лекционные курсы НОЦ. М.: МИАН; 2010. 145 с.

Downloads

Download data is not yet available.