Software Implementation of the Matrix Method for Solving the Heat Conduction Problem in a Multilayer Medium
PDF (Russian)

Keywords

matrix method
multilayer medium
thermal conductivity equation

How to Cite

1.
Kalmanovich V.V., Kartanov A.A. Software Implementation of the Matrix Method for Solving the Heat Conduction Problem in a Multilayer Medium // Russian Journal of Cybernetics. 2024. Vol. 5, № 4. P. 31-39. DOI: 10.51790/2712-9942-2024-5-4-04.

Abstract

we developed an algorithm to solve stationary and non-stationary heat conduction problems involving ideal and non-ideal contact between layers. This algorithm integrates the Bers generalized power method, matrix method, and the method of separation of variables (Fourier method). Our approach provides a unified framework for deriving approximate analytical solutions for media with an arbitrary number of layers in flat, cylindrical, or spherical configurations.
We also implemented this approach in the Maple environment, which can address four types of problems: stationary heat conduction with ideal or non-ideal contact and non-stationary heat conduction with ideal or non-ideal contact between layers. The algorithm can solve boundary value problems of the first or third type. The results are temperature distribution curves, either 2D for stationary problems, or 3D for non-stationary ones, enabling clear visualization of the results.

https://doi.org/10.51790/2712-9942-2024-5-4-04
PDF (Russian)

References

Bers L., Gelbart A. On a Class of Functions Defined by Partial Differential Equations. Transactions of the American Mathematical Society. 1944;56(1):67–93.

Гладышев Ю. А. О последовательности обобщенных степеней Берса с внутренней структурой. Математические заметки. 1994;55(3):21–34.

Гладышев Ю. А. О методе построения обобщенных степеней Берса в комплексном пространстве. Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. 2021;200:36–44. DOI: 10.36535/0233-6723-2021-200-36-44.

Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука; 1964. 488 с.

Golubkov A. A. Inverse Problem for the Sturm–Liouville Equation with Piecewise Entire Potential and Piecewise Constant Weight on a Curve. Сибирские электронные математические известия. 2021;18(2):951–974. DOI: /10.33048/semi.2021.18.072.

Беляев Ю. Н. Методы вычислений матриц переноса упругих деформаций. Вестник Пермского национального исследовательского политехнического университета. Механика. 2013;3:63–110.

Борн М., Вольф Э. Основы оптики. М.: Наука; 1970. 720 с.

Калманович В. В. О построении решения задачи теплопроводности в многослойной среде с неидеальным тепловым контактом между слоями. Таврический вестник информатики и математики. 2021;2:43–52. DOI: 10.37279/1729-3901-2021-20-2-43-52.

Kalmanovich V. V., Stepovich M. A., Seregina E. V. Comparison of Analytical and Numerical Modeling of Distributions of Nonequilibrium Minority Charge Carriers Generated by a Wide Beam of MediumEnergy Electrons in a Two-Layer Semiconductor Structure. Journal of Physics: Conference Series. 2020;1479:012116. DOI: 10.1088/1742-6596/1479/1/012116.

Downloads

Download data is not yet available.