Applicability of 0-Dimensional (Global) Model to the Characterization of Inductively-Coupled Plasma in Reactive-Ion Etching Systems
PDF (Russian)

Keywords

reactive-ion etching
plasma
diagnostics
modeling
active species

How to Cite

1.
Efremov A.M., Smirnov S.A., Betelin V.B. Applicability of 0-Dimensional (Global) Model to the Characterization of Inductively-Coupled Plasma in Reactive-Ion Etching Systems // Russian Journal of Cybernetics. 2024. Vol. 5, № 4. P. 10-17. DOI: 10.51790/2712-9942-2024-5-4-01.

Abstract

we summarized and analyzed the assumptions used for simulating inductive discharge plasmas under typical reactive-ion etching conditions. We confirmed that applying the Maxwellian approximation to the electron energy distribution function provides an accurate description of the kinetics of electron impact processes. We demonstrated that both direct simulation (based on solving chemical kinetics equations with Langmuir probe diagnostics data as input) and self-consistent simulation (incorporating input power balance and ionization/recombination balance equations for charged particles) achieve satisfactory agreement with data from independent experiments. We provided examples comparing simulation predictions with experimental data for Ar, Cl2 and CF4 plasmas. However, the application of self-consistent simulation in complex multi-component systems is limited by the lack or low reliability of data on electron impact cross-sections and transport characteristics, such as diffusion coefficients and mobilities for unstable plasma chemical reaction products.

https://doi.org/10.51790/2712-9942-2024-5-4-01
PDF (Russian)

References

Nojiri K. Dry Etching Technology for Semiconductors. Tokyo: Springer International Publishing; 2015. 116 p.

Wolf S., Tauber R. N. Silicon Processing for the VLSI Era. Volume 1. Process Technology. New York: Lattice Press; 2000. 416 p.

Красников Г. Я. Возможности микроэлектронных технологий с топологическими размерами менее 5 нм. Nanoindustry Russia. 2020;13(5):13–19. DOI: 10.22184/1993-8578.2020.13.5s.13.19.

Lieberman M. A., Lichtenberg A. J. Principles of Plasma Discharges and Materials Processing. New York: John Wiley & Sons Inc.; 2005. 757 p.

Thorsteinsson E. G., Gudmundsson J. T. A Global (Volume Averaged) Model of a Chlorine Discharge. Plasma Sources Sci. Technol. 2010;19:015001 (1–15). DOI: 10.1088/0963-0252/19/1/015001.

Tinck S., Boullart W., Bogaerts A. Simulation of an Ar/Cl2 Inductively Coupled Plasma: Study of the Effect of Bias, Power and Pressure and Comparison with Experiments. J. Phys. D. Appl. Phys. 2008;41:065207 (1–12). DOI: 10.1088/0022-3727/41/6/065207.

Hsu C. C., Nierode M. A., Coburn J. W., Graves D. B. Comparison of Model and Experiment for Ar, Ar/O2 and Ar/O2/Cl2 Inductively Coupled Plasmas. J. Phys. D. Appl. Phys. 2006;39:3272–3284. DOI: 10.1088/0022-3727/39/15/009.

Corr C. S., Despiau-Pujo E., Chabert P., Graham W. G., Marro F. G., Graves D. B. Comparison between Fluid Simulations and Experiments in Inductively Coupled Argon/Chlorine Plasmas. J. Phys. D. Appl. Phys. 2008;41:185–202. DOI: 10.1088/0022-3727/41/18/185202.

Efremov A. M., Kim D. P., Kim C. I. Simple Model for Ion-Assisted Etching Using Cl2 −Ar Inductively Coupled Plasma: Effect of Gas Mixing Ratio. IEEE Trans. Plasma Sci. 2004;32(3):1344–1351. DOI: 10.1109/TPS.2004.828413.

Efremov A., Lee J., Kwon K. H. A Comparative Study of CF4, Cl2 and HBr + Ar Inductively Coupled Plasmas for Dry Etching Applications. Thin Solid Films. 2017;629:39–48. DOI: 10.1016/j.tsf.2017.03.035.

Lee C., Lieberman M. A. Global Model of Ar, O2, Cl2 and Ar/O2 High Density Plasma Discharges. J. Vac. Sci.Technol. A. 1995;13(2):368–377. DOI: 10.1116/1.579366.

Chantry P. J. A Simple Formula for Diffusion Calculations Involving Wall Reflection and Low Density. J. Appl. Phys. 1987;62:1141–1148. DOI: 10.1063/1.339662.

Nakagawa H., Morishita S., Noda S., Okigawa M., Inoue M., Sekine M., Ito K. Characterization of 100 MHz Inductively Coupled Plasma (ICP) by Comparison with 13.56 MHz ICP. J. Vac. Sci. Technol. A. 1999;17(4):1514–1525. DOI: 10.1116/1.581845.

Efremov A. M., Kim G. H., Kim J. G., Bogomolov A. V., Kim C. I. Applicability of Self-Consistent Global Model for Characterization of Inductively Coupled Cl2 Plasma. Vacuum. 2007;81(5):669–675. DOI: 10.1016/j.vacuum.2006.09.017.

Malyshev M. V., Donnelly V. M. Diagnostics of Chlorine Inductively Coupled Plasmas. Measurement of Electron Temperatures and Electron Energy Distribution Functions. J. Appl. Phys. 2000;87:1642–1650. DOI: 10.1063/1.372072.

Ullal S., Godfrey A., Edelberg E., Braly L., Vahedi V., Aydil E. Effect of Chamber Wall Conditions on Cl and Cl2 Concentrations in an Inductively Coupled Plasma Reactor. J. Vac. Sci. Technol. A. 2002;20:43–52. DOI: 10.1116/1.1421602.

Malyshev M. V., Donnelly V. M. Diagnostics of Inductively Coupled Chlorine Plasmas: Measurement of Electron and Total Positive Ion Densities. J. Appl. Phys. 2001;90:1130–1137. DOI: 10.1063/1.1381044.

Malyshev M. V., Fuller N. C. M., Bogart K. H. A., Donnelly V. M. Diagnostics of Inductively Coupled Chlorine Plasmas: Measurement of Cl2+ and Cl+ Densities. J. Appl. Phys. 2000;88:2246–2453. DOI: 10.1063/1.1288156.

Kimura T., Ohe K. Model and Probe Measurements of Inductively Coupled CF4 Discharges. J. Appl. Phys. 2002;92:1780–1787. DOI: 10.1063/1.1491023.

Kimura T., Ohe K. Probe Measurements and Global Model of Inductively Coupled Ar/CF4 discharges. Plasma Sources Sci. Technol. 1999;8:553–560. DOI: 10.1088/0963-0252/8/4/305.

Kimura T., Noto M. Experimental Study and Global Model of Inductively Coupled CF4/O2 Discharges. J. Appl. Phys. 2006;100:063303 (1–9). DOI: 10.1063/1.2345461.

Efremov A., Lee J., Kim J. On the Control of Plasma Parameters and Active Species Kinetics in CF4+O2+Ar Gas Mixture by CF4/O2 and O2/Ar Mixing Ratios. Plasma Chem. Plasma Process. 2017;37:1445– 1462. DOI: 10.1007/s11090-017-9820-z.

Baek S. Y., Efremov A., Bobylev A., Choi G., Kwon K.-H. On Relationships between Plasma Chemistry and Surface Reaction Kinetics Providing the Etching of Silicon in CF4, CHF3, and C4F8 Gases Mixed with Oxygen. Materials. 2023;16:5043 (1–18). DOI: 10.3390/ma16145043.

Downloads

Download data is not yet available.