Simulation of Thermophysical Processes During the Manufacturing of a Semiconductor Device Housing Contact
PDF (Russian)

Keywords

high-power transistor
crystal
housing
temperature
solder
metallization
contact

How to Cite

1.
Shakhmaeva A.R., Uvaysov S.U., Kazalieva E. Simulation of Thermophysical Processes During the Manufacturing of a Semiconductor Device Housing Contact // Russian Journal of Cybernetics. 2024. Vol. 5, № 3. P. 42-49. DOI: 10.51790/2712-9942-2024-5-3-05.

Abstract

this paper presents a simulation of thermophysical processes during the assembly of a high-power bipolar transistor into its housing. The structure of the transistor and the characteristics of its structural elements are examined, and the temperature field of the transistor is determined. A system of differential equations describing the temperature field, along with initial and boundary conditions, is formulated for the simulation of these thermophysical processes.
The solution to this system of differential equations is obtained using the numerical finite element method implemented in the Elcut application software package. The numerical calculation of the temperature field involves solving partial differential equations as well as integral equations. A numerical experiment based on a model of a high-power bipolar transistor is conducted, taking into account the thermophysical parameters of its regions.
For a quantitative analysis of the thermophysical processes in the transistor structure, onedimensional graphs illustrating temperature variations in the regions of the bipolar transistor are presented. The results are displayed as two-dimensional temperature fields in cross-section, with supply currents varying from 3 to 9 A, for the proposed metallization layer on the reverse side of the transistor structure, which consists of a chromium-nickel-tin-silver composition, as well as for the chromium-nickel layer used in the conventional manufacturing process of the studied transistor. Graphs depicting temperature changes along the axis of the metallization layer for both the chromium-nickel-tin-silver and chromium-nickel deposition methods at different supply currents are included. The simulation of thermal resistance demonstrates lower values for the chromium-nickel-tin-silver metallization compared to the conventional chromium-nickel approach.

https://doi.org/10.51790/2712-9942-2024-5-3-05
PDF (Russian)

References

Нечаев A. M., Синкевич В. Ф., Козлов H. A. Расчет стационарных тепловых полей в структурах мощных транзисторов. Электронная техника. Серия 2. Полупроводниковые приборы. 1989;1:19–24.

Шахмаева А. Р., Казалиева Э. Способ присоединения кристаллов транзисторов к основанию выводной рамки в процессе сборки полупроводникового прибора. Датчики и системы. 2024;1:32–37. DOI: 10.25728/datsys.2024.1.7.

Shakhmayeva A. R., Kazalieva E. Technology of Metallizatin of the Structure of a Semiconductor Device by a Composition of Nanosized Metal Layers. Russian Microelectronics. 2023;52:228–231. DOI: 10.1134/S1063739723600772.

Закс Д. И. Параметры теплового режима полупроводниковых микросхем. М.: Радио и связь; 1983. 128 c.

Жуков Н. П., Майникова Н. Ф, Никулин С. С. и др. Решение задач теплопроводности методом конечных элементов. Томск: Изд-во ТГТУ; 2014. 80 с.

Наседкин А. В., Наседкина А. А. Моделирование связанных задач: математические постановки и конечно-элементные технологии. Ростов-на-Дону; Таганрог: Изд-во Южного федерального университета; 2019. 176 с.

Леонтьев А. И. Теория тепломассообмена. М.: МГТУ им. Н.Э. Баумана; 2018. 464 с.

Румянцев А. В. Метод конечных элементов в задачах теплопроводности. Калининград: КГУ; 2010. 95 с.

Румшиский Л. З. Математическая обработка результатов эксперимента. М.: Наука; 1971. 192 с.

Шахмаева А. Р., Казалиева Э. Разработка технологии посадки кристалла мощного транзистора на основание корпуса с улучшенными характеристиками. Наукоемкие технологии. 2023;24(8):5–11. DOI: 10.18127/j19998465-202308-01.

Downloads

Download data is not yet available.