Investigation of Systems Weakened by Kinked Cracks
PDF (Russian)
PDF

Keywords

3D space
elastic medium
crack
stress intensity factor
boundary element method
displacement discontinuity method

How to Cite

1.
Shamina A.A., Zvyagin A.V., Akulich A.V., Tyurenkova V.V., Smirnov N.N. Investigation of Systems Weakened by Kinked Cracks // Russian Journal of Cybernetics. 2020. Vol. 1, № 2. P. 26-34. DOI: 10.51790/2712-9942-2020-1-2-3.

Abstract

Structural strength of aircraft is a key aspect of flight safety. Hidden defects in the material significantly affect its strength under various loads. The crack growth rate and direction, and the crack growth threshold load (stress intensity factor) affect the strength of the damaged material. This study investigates a 3D elastic structure weakened by a system of flat cracks and a kinked crack. The numerical method used was the boundary element method, specifically, the displacement discontinuity method. The code was developed with C++. The results were compared against the available analytic results. The behavior of cracks under bending and a range of loading conditions was studied.

https://doi.org/10.51790/2712-9942-2020-1-2-3
PDF (Russian)
PDF

References

Smirnov N. N., Kiselev A. B., Smirnova M. N., Nikitin V. F. Space Traffic Hazards from Orbital Debris Mitigation Strategies. Acta Astronautica. 2015;109:144–152.

Xiaogang L., Xiaotian Zh. The Strength Analysis of Steel Sunk Screw Connections in the Rocket. Acta Astronautica. 2017;137:345–352

Pisarenko G. S., Tretyachenko G. N. On Some Problems of Strength of Heat-Shield Materials. Acta Astronautica. 1983;10(7):521–525.

Dearborn D. S. P., Syal M. B., Barbee B. W., Gisler G., Greenaugh K., Howley K. M., Leung R., Lyzhoft J., Miller P. L., Nuth J. A., Plesko C. S., Seery B. D., Wasem J. V., Weaver R. P., Zebenay M. Options and Uncertainties in Planetary Defense: Impulse-Dependent Response and the Physical Properties of Asteroids. Acta Astronautica. 2020;166:290–305.

Kubota Y., Miyamoto O., Aoki T., Ishida Y., Ogasawara T., Umezu Sh. New Thermal Protection System Using High-Temperature Carbon Fibre-Reinforced Plastic Sandwich Panel. Acta Astronautica. 2019;160:519–526.

Qingxi H., Wanyuan L., Haiguang Zh., Dali L., Fujun P., Yongchao D. Research into Topology Optimization and the FDM Method for a Space Cracked Membrane. Acta Astronautica. 2017;136:443–449.

Griffith A. A. The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 1921;221:163–198.

Griffith A. A. The Theory of Rupture. Proceedings of the First International Congress for Applied Mechanics. Delft, 1924. P. 55–63.

Orowan E. Energy Criteria of Fracture. The Welding Journal. 1955;34(3):1576–1606.

Irwing G. R. Fracture Dynamics. Fracturing in Metals. Cleveland: ASM; 1948. P. 147–166.

Rice J. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968;35:379–386.

Райс Дж. Математические методы в механике разрушения. Разрушение. Т. 2. Математические основы теории разрушения. М.: Мир; 1975. С. 204–335.

Cherepanov G. P. Crack Propagation in Continuous Media. J. Appl. Math. Mech. 1967;31:503–512.

Кит Г. С., Хай М. В. Метод потенциалов в трёхмерных задачах термоупругости тел с трещинами. Киев: Наукова думка; 1989. 288 с.

Справочник по коэффициентам интенсивности напряжений: В двух томах. Т. 1 / Пер. с англ. / Под ред. Ю. Мураками. М.: Мир; 1990. 448 с.

Справочник по коэффициентам интенсивности напряжений: В двух томах. Т. 2 / Пер. с англ. / Под ред. Ю. Мураками. М.: Мир; 1990. 1016 с.

Slepyan L. I. Models and Phenomena in Fracture Mechanics. Berlin; Heidelberg; New York; Barcelona; Hongkong; London; Mailand; Paris; Tokio: Springer. 2002. 577 p.

Шифрин Е. И. Пространственные задачи линейной механики разрушения. М.: Издательство физико-математической литературы; 2002. 368 с.

Уфлянд Я. С. Интегральные преобразования в задачах теории упругости. Л.: Наука, 1967. 402 с.

Гольдштейн Р. В. Плоская трещина произвольного разрыва в упругой среде. Изв. АН СССР. Механика твердого тела. 1979;3:111–126.

Kassir M. K., Sih G. C. External Crack in Elastic Solid. The International Journal of Fracture Mechanics. 1968;4(4):347–356.

Звягин А. В., Панфилов Д. И., Шамина А. А. Взаимное влияние дискообразных трещин в трехмерном упругом пространстве. Вестник Московского университета. Серия 1: Математика. Механика. 2019;4:34–41.

Downloads

Download data is not yet available.