Analyzing the Accuracy and Performance of the Wang-Landau Algorithm for Calculating the Density of States in the Ising Model
PDF (Russian)

Keywords

Wang-Landau algorithm
density of states
algorithm performance
critical transition

How to Cite

1.
Egorov V.I., Kryzhanovsky B.V. Analyzing the Accuracy and Performance of the Wang-Landau Algorithm for Calculating the Density of States in the Ising Model // Russian Journal of Cybernetics. 2024. Vol. 5, № 2. P. 46-52. DOI: 10.51790/2712-9942-2024-5-2-05.

Abstract

we analyzed the accuracy and performance of the Wang-Landau algorithm in calculating the density of states for the two-dimensional Ising model. Our findings indicate that calculating the density of states simultaneously by energy and magnetization enhances the accuracy of energy moment estimations. As the lattice size increases, the relative error in the density of states decreases. However, for large lattices, it is not possible to estimate the execution time of the algorithm in advance, as the criterion for switching to the 1/t mode is never met.

https://doi.org/10.51790/2712-9942-2024-5-2-05
PDF (Russian)

References

Wang F., Landau D. P. Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States. Physical Review Letters. 2001;86(10):2050.

Belardinelli R. E., Pereyra V. D. Wang–Landau Algorithm: A Theoretical Analysis of the Saturation of the Error. The Journal of Chemical Physics. 2007;127:18.

Bhar S., Roy S. K. A Comparison of the Performance of Wang–Landau–Transition–Matrix Algorithm with Wang–Landau Algorithm for the Determination of the Joint Density of States for Continuous Spin Models. Computer Physics Communications. 2013;184(5):1387–1394.

Petrov P., Averkiev N., Bogoslovskiy N. Analytical and Numerical Calculations of the Magnetic Properties of a System of Disordered Spins in the Ising Model. St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023:65(1):7–13.

Bogoslovskiy N. A., Petrov P. V., Averkiev N. S. Phase Diagram of a Ferromagnetic Semiconductor: Origin of Superparamagnetism. Physical Review B. 2024;109(2):024436.

Vogel T., Li Y. W., Wust T., Landau D. P. Generic, Hierarchical Framework for Massively Parallel¨ Wang–Landau Sampling. Physical Review Letters. 2013;110:210603.

Vogel T., Li Y. W., Wust T., Landau D. P. Scalable Replica-Exchange Framework for Wang–Landau¨ Sampling. Physical Review E. 2014;90(2):023302.

Beale P. D. Exact Distribution of Energies in the Two-Dimensional Ising Model. Physical Review Letters. 1996;76(1):78.

Ferdinand A. E., Fisher M. E. Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice. Physical Review. 1969;185(6):832.

Kryzhanovsky B., Litinskii L. Generalized Approach to Description of Energy Distribution of Spin System. Optical Memory and Neural Networks. 2015;24:165–185.

Крыжановский Б. В., Литинский Л. Б. Обобщенное уравнение Брегга–Вильямса для систем с произвольным дальнодействием. Доклады АН. 2014;459(6):680–684.

Downloads

Download data is not yet available.