Software for Solving the Cauchy Problem and Visualizing Heavy Impurity Flow Simulation Results
PDF (Russian)

Keywords

simulation
Navier-Stokes equation
Runge-Kutta method
Cauchy problem

How to Cite

1.
Smorodinov A.D., Gavrilenko T.V., Dubovik A.O., Morgun D.A. Software for Solving the Cauchy Problem and Visualizing Heavy Impurity Flow Simulation Results // Russian Journal of Cybernetics. 2024. Vol. 5, № 2. P. 35-45. DOI: 10.51790/2712-9942-2024-5-2-04.

Abstract

this paper presents a method for data preparation and visualization of the solution to the Cauchy problem, which arises in simulating the dynamics of impurities in potential flows and in a viscous incompressible liquid within a cylindrical flow region. The Cauchy problem was solved using the 4th-order Runge-Kutta method. We developed software that solves the Cauchy problem in 3D space and automatically visualizes the results. This method can simulate the dynamics of an inertialess, non-diffusing impurity in a liquid, provided that the vector field V , which solves the Cauchy problem, satisfies the hydrodynamics equations. The problem is considered for the entire set of initial data defining the impurity distribution at the initial time. The software performs calculations distributed over available computer cores using OpenMP. The MathGL library was employed for visualization. The paper also presents the results of software testing.

https://doi.org/10.51790/2712-9942-2024-5-2-04
PDF (Russian)

References

Демидович Б. П., Марон И. А., Шувалова Э. З. Численные методы анализа. 3-е изд. М.: Наука; 1967. 368 с.

Ильина В. А., Силаев П. К. Численные методы для физиков-теоретиков. Ч. 2. М.–Ижевск: Институт компьютерных исследований; 2004. 118 с.

Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. М.: Лаборатория Базовых Знаний; 2001. 630 с.

OpenMP. Режим доступа: https://www.openmp.org/.

MathGL. Режим доступа: https://mathgl.sourceforge.net/doc_ru/Main.html.

Галкин В. А., Смородинов А. Д., Моргун Д. А. Решение уравнения Навье–Стокса для сталкивающихся потоков. Успехи кибернетики. 2023;4(2):8–15. DOI: 10.51790/2712-9942-2023-4-2-01.

Галкин В. А., Дубовик А. О. Об одном классе точных решений системы уравнений Навье–Стокса для несжимаемой жидкости. Математическое моделирование. 2023;35(8):3–13.

Downloads

Download data is not yet available.