Abstract
this study deals with the simulation of inertial and magnetic sensors in virtual environment systems. We proposed a mathematical model for the correction of accelerometer, gyroscope, and magnetometer readings to account for the effects of temperature, cross-coupling, and noise. We also proposed using the sensor readings to compute the Euler angles that define the vehicle’s orientation. We calibrated the accelerometer and gyroscope readings to reduce the zero drift error. The Euler angles were derived by integrating the gyroscope readings and using the found relationships between the accelerometer and magnetometer readings. To eliminate the cumulative integration error caused by sensor noise, we implemented a complementary filter. It mixes the angles in a given ratio. We tested these approaches in a virtual environment with a virtual quadcopter and a coaxial-rotor helicopter. The results were promising and can be used in advanced simulators designed to train UAV operators
References
Гуртов В. А., Беляев М. А., Бакшеева А. Г. Микроэлектромеханические системы: учеб. пособие. Петрозаводск: Изд-во ПетрГУ; 2016. 171 с.
LaValle S., Yershova A., Katsev M., Antonov M. Head Tracking for the Oculus Rift. Robotics and Automation (ICRA), IEEE International Conference. Hong Kong, China; 2014. P. 187–194. DOI: 10.1109/ICRA.2014.6906608.
Aranburu A. IMU Data Processing to Recognize Activities of Daily Living with Smart Headset. University of California; 2018. 106 р.
Renaudin V., Combettes C. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-Based Attitude Estimation with Smartphone Sensors for Indoor Pedestrian Navigation. Sensors. 2014;14:22864– 22890. DOI: 10.3390/s141222864.
Kok M., Hol J. D., Schon T. B. Using Inertial Sensors for Position and Orientation Estimation. Foundations and Trends in Signal Processing. 2017;11(1–2):1–153. DOI: 10.1561/2000000094.
Павлов Д. В., Лукин К. Г., Петров М. Н. Разработка имитационной модели MEMS-акселерометра в среде Simulink. Вестник НовГУ. 2016;4:28–33.
Narkhede P., Poddar S., Walambe R., Ghinea G., Kotecha K. Cascaded Complementary Filter Architecture for Sensor Fusion in Attitude Estimation. Sensors. 2021;21:1–18. DOI: 10.3390/s21061937.
Valenti R. G., Dryanovski I., Xiao J. Z. Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs. Sensors. 2015;15(8):19302–19330. DOI: 10.3390/s150819302.
Pedley M. High-Precision Calibration of a Three-Axis Accelerometer. Freescale Semiconductor Application Note. Austin, TX, USA; 2015.
Roetenberg D., Luinge H. J., Baten C. T., Veltink P. H. Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation. IEEE Trans. Neural Syst. Rehabil. 2005;13:395–405. DOI: 10.1109/TNSRE.2005.847353.
Михайлюк М. В., Мальцев А. В., Тимохин П. Ю., Страшнов Е. В., Крючков Б. И., Усов В. М. Система виртуального окружения Virsim для имитационно-тренажерных комплексов подготовки космонавтов. Пилотируемые полеты в космос. 2020;37(4):72–95. DOI: 10.34131/MSF.20.4.72-95.
Rogers R. M. Applied Mathematics in Integrated Navigation Systems. AIAA Education Series; 2000.
Дронг В. И., Дубинин В. В., Ильин М. М. и др. Курс теоретической механики: учебник для вузов; под общ. ред. К. С. Колесникова. 3-е изд., стереотип. М.: Изд-во МГТУ им. Н. Э. Баумана; 2005. 736 с.
Accelerometer Sensor Parameters – MATLAB. Режим доступа: https://www.mathworks.com/help/nav/ref/accelparams.html.
Gyroscope Sensor Parameters – MATLAB. Режим доступа: https://www.mathworks.com/help/nav/ref/gyroparams.html.
Magnetometer Sensor Parameters – MATLAB. Режим доступа: https://www.mathworks.com/help/nav/ref/magparams.html.