Models of Heuristic Brain Activity and Artificial Intelligence
PDF (Russian)

Keywords

chaos
stochastics
brain cognitive effects
Eskov-Zinchenko effect

How to Cite

1.
Eskov V.M., Filatov M.A., Voronyuk T.V., Samoilenko I.S. Models of Heuristic Brain Activity and Artificial Intelligence // Russian Journal of Cybernetics. 2023. Vol. 4, № 4. P. 32-40. DOI: 10.51790/2712-9942-2023-4-4-03.

Abstract

in human cognitive processes, we encounter the generation and handling of two types of information: the objectively new and the subjectively new. The pursuit of creating artificial intelligence places a primary emphasis on the first type, the creation of objectively new information. In this context, such artificial systems can potentially serve as effective replacements for human cognitive abilities. The study delves into two novel operational modes of artificial neural networks, inspired by the functioning of the human brain. It was discovered that integrating these modes into existing neural networks enables us to simulate the heuristic functioning of the brain. As a result, these intelligent systems demonstrate proficiency in tackling challenges related to system synthesis and the identification of order parameters. Presently, these problems lack formalization in mathematics and do not possess a universally accepted solution

https://doi.org/10.51790/2712-9942-2023-4-4-03
PDF (Russian)

References

Haken H. Principles of Brain Functioning: a Synergetic Approach to Brain Activity, Behavior and Cognition. Springer Series in Synergetics. Springer; 1995. 349 p.

Albert S. T., Hadjiosif A. M., Jang J., Zimnik A. J., Soteropoulos D. S., Baker S. N., Churchland M. M., Krakauer J. W., Shadmehr R. Postural Control of Arm and Fingers through Integration of Movement Commands. Elife. 2020;9:1–35.

Vokhmina Y. V., Eskov V. M., Gavrilenko T. V., Filatova O. E. Measuring Order Parameters Basedon Neural Network Technologies. Measurement Techniques. 2015;58(4):462–466. DOI: 10.1007/S11018-015-0735-X.

Eskov V. V., Pyatin V. F., Filatova D. Yu., Bashkatova Yu. V. Khaos parametrov gomeostaza serdechno-sosudistoi sistemy cheloveka [Chaos of homeostasis parameters of the human cardiovascular system]. Samara: Publishing house of Porto-Print LLC; 2018. 312 s.

Menskii M. B. Concept of Consciousness in the Context of Quantum Mechanics. Physics-Uspekhi. 2005;48(4):389. DOI: 10.3367/UFNr.0175.200504c.0413.

Menskii M. B. Quantum Measurements, the Phenomenon of Life, and Time Arrow: Three Great Problems of Physics (in Ginzburg’s Terminology) and Their Interrelation. Physics-Uspekhi. 2007;50(4):397. DOI:10.3367/UFNr.0177.200704j.0415.

Penrose R. The Emperor’s New Mind: Concerning Computers, Mind and Laws of Physics. Oxford University Press; 1989.

Betelin V. B., Eskov V. M., Galkin V. A., Gavrilenko T. V. Stochastic Volatility in the Dynamics of Complex Homeostatic Systems. Doklady Mathematics. 2017;95(1):92–94. DOI:10.1134/S1064562417010240.

Eskov V. V., Filatova D. Y., Ilyashenko L. K., Vochmina Y. V. Classification of Uncertainties in Modeling of Complex Biological Systems. Moscow University Physics Bulletin. 2019;74(1):57–63. DOI:10.3103/S0027134919010089.

Eskov V. V., Orlov E. V., Gavrilenko T. V., Manina E. A. Capabilities of Artificial Neuron Networks for System Synthesis in Medicine. Cybernetics Perspectives in Systems. CSOC 2022. Lecture Notes in Networks and Systems. Vol. 503. Springer; 2022. DOI: 10.1007/978-3-031-09073-8_16.

Zilov V. G., Khadartsev A. A., Eskov V. V., Ilyashenko L. K., Kitanina K. Yu. Examination of Statistical Instability of Electroencephalograms. Bulletin of Experimental Biology and Medicine. 2019;168(7):5–9.DOI: 10.1007/s10517-019-04633-7.

Zaslavsky B. G., Filatov M. A., Eskov V. V., Manina E. A. Non-Stationary States in Physics and Biophysics. Russian Journal of Cybernetics. 2020;1(2):61–67.

Hill A. V. Why Biophysics? Science. 1956;124(3234):1233–1237.

Eskov V. V. Modeling of Biosystems from the Stand Point of “Complexity” by W. Weaverand “Fuzziness” by L. A. Zadeh. Journal of Physics Conference Series. 2021;1889(5):052020.DOI:10.1088/1742-6596/1889/5/052020.

Гавриленко Т. В., Мельникова Е. Г., Кухарева А., Коннов П. Е. Физико-математическая аргументация для отрицания базовой гипотезы М. Б. Менского. Сложность. Разум. Постнеклассика. 2023;2:68–79. DOI: 10.12737/2306-174X-2023-2-54-67.

Filatova O. E., Bashkatova Yu. V., Shakirova L. S., Filatov M. A. Neural Network Technologies in System Synthesis. IOP Conf. Series: Materials Science and Engineering. 2021;1047:012099. DOI: 10.1088/1757-899X/1047/1/012099.

Grigorenko V. V., Bashkatova Yu. V., Shakirova L. S., Egorov A. A., Nazina N. B. New Information Technologies in the Estimation of Stationary Modes of the Third Type Systems. IOP Conference Series: Materials Science and Engineering. 2020;052034. DOI:10.1088/1757-899X/862/5/052034.

Orlov E. V., Filatova O. E., Galkin V. A. Chempalova L. S. The Prospects of New Invariants Creating in Biocybernetics. AIP Conference Proceedings. 2023;2700:040056. DOI: 10.1063/5.0138430.

Gazya G. V., Eskov V. V., Gavrilenko T. V. Neural Network Technologies in Industrial Ecology. AIP Conference Proceedings. 2023;2700:050033. DOI: 10.1063/5.0125298.

Boltaev A. V., Gazya G. V., Khadartsev A. A., Sinenko D. V. The Electromagnetic Fields Effect on Chaotic Dynamics of Cardiovascular System Parameters of Workers of Oil and Gas Industry. Human Ecology (Ekologiya Cheloveka). 2017;8:3–7.

Еськов В. М., Филатов М. А., Газя Г. В., Стратан Н. Ф. Возможности создания искусственного интеллекта на базе искусственных нейросетей. Успехи кибернетики. 2021;2(3):44–52. DOI:10.51790/2712-9942-2021-2-3-6.

Weaver W. Science and Complexity. American Scientist. 1948;36:536.

Downloads

Download data is not yet available.