A Magnetic Field-Controlled Phase Transition in Antiferromagnetic Materials
PDF (Russian)

Keywords

antiferromagnetic materials
phase transitions
layered media
critical temperature

How to Cite

1.
Egorov V.I., Kryzhanovsky B.V. A Magnetic Field-Controlled Phase Transition in Antiferromagnetic Materials // Russian Journal of Cybernetics. 2023. Vol. 4, № 4. P. 13-21. DOI: 10.51790/2712-9942-2023-4-4-01.

Abstract

we studied the properties of antiferromagnetic materials in an external magnetic field using the mean field approximation. We found that the external magnetic field does not destroy the phase transition in antiferromagnetic materials but just changes the critical properties and shifts the critical point so it is possible to control the system properties. Moreover, the number of critical points can vary from one (second-order phase transition) to four (two first-order phase transitions and two second-order phase transitions). We estimated the critical properties at the critical point shifted by the applied magnetic field. We showed that by varying the magnetic field magnitude, we can increase the critical temperature in materials with strong antiferromagnetic interactions by more than 300%.

https://doi.org/10.51790/2712-9942-2023-4-4-01
PDF (Russian)

References

Camley R. E., Tilley D. R. Phase Transitions in Magnetic Superlattices. Physical Review B.1988;37(7):3413.

Camley R. E. Properties of Magnetic Superlattices with Antiferromagnetic Interfacial Coupling: Magnetization, Susceptibility, and Compensation Points. Physical Review B. 1989;39(16):12316.

Lipowski A. Critical Temperature in the Two-Layered Ising Model. Physica A: Statistical Mechanics and its Applications. 1998;250(1–4):373–383.

Horiguchi T., Lipowski A., Tsushima N. Spin-32 Ising Model and Two-Layer Ising Model. Physica A:Statistical Mechanics and its Applications. 1996;224(3–4):626–638.

Diaz I. J. L., Branco N. S. Monte Carlo Simulations of an Ising Bilayer with Non-Equivalent Planes. Physica A: Statistical Mechanics and its Applications. 2017;468:158–170.

Diaz I. J. L., Branco N. S. Monte Carlo Study of an Anisotropic Ising Multilayer with Antiferromagnetic Interlayer Couplings. Physica A: Statistical Mechanics and its Applications. 2018;490:904–917.

Gharaibeh M., et al. Compensation and Critical Behavior of Ising Mixed Spin (1-1/2-1) Three LayersSystem of Cubic Structure. Physica A: Statistical Mechanics and its Applications. 2020;550:124–147.

Wang W., Feng-li X., and Ming-ze W. Compensation Behavior and Magnetic Properties of a Ferrimagnetic Mixed-Spin (1/2, 1) Ising Double Layer Superlattice. Physica B: Condensed Matter. 2017;515:104–111.

Kaneyoshi T., and Jascur M. Compensation Temperatures of Ferrimagnetic Bilayer Systems. Journal ofmagnetism and magnetic materials. 1993;118(1–2):17–27.

Szałowski K., and Balcerzak T. Normal and Inverse Magnetocaloric Effect in Magnetic Multilayers with Antiferromagnetic Interlayer Coupling. Journal of Physics: Condensed Matter. 2014:26(38):386003.

Balcerzak T., and Szałowski K. Ferrimagnetism in the Heisenberg–Ising Bilayer with Magnetically Non-Equivalent Planes. Physica A: Statistical Mechanics and its Applications. 2014;395:183–192.

Крыжановский Б. В., Егоров В. И. Критические показатели спиновой модели на полносвязномграфе при наличии антиферромагнитного взаимодействия. Успехи кибернетики. 2023;4(3):7–18.

Baxter R. J. Exactly Solved Models in Statistical Mechanics. London; Academic Press; 1982.

Крыжановский Б. В., Литинский Л. Б. Обобщенное уравнение Брегга–Вильямса для систем с про-извольным дальнодействием. Доклады АН. 2014;459(6):680–684.

Downloads

Download data is not yet available.