Simulation of Virtual Environment for Crewed Lunar Missions
PDF (Russian)

Keywords

crewed spacecraft
Moon
soft landing
virtual environment

How to Cite

1.
Maltsev A.V., Timokhin P.Y., Strashnov E.V. Simulation of Virtual Environment for Crewed Lunar Missions // Russian Journal of Cybernetics. 2022. Vol. 3, № 4. P. 46-53. DOI: 10.51790/2712-9942-2022-3-4-06.

Abstract

we studied the virtual simulation of a crewed spacecraft control for research missions to the Moon’s surface. There is an obvious need to survey the Moon in the short and medium term. The solutions are based on advanced VR: the environment is completely replaced by a virtual one. We proposed an architecture of a virtual environment system consisting of hardware, software, and digital models. The motion and landing of a virtual spacecraft are simulated by estimating the jet engine thrust. The control inputs are optimized for fast response (spacecraft orientation) and min fuel consumption (for deceleration). The control logic is supported with feedback from virtual sensors to stabilize, orient, decelerate, and perform a soft landing on the Moon. The moon’s surface is simulated by a GPU using detailed Moon textures and adaptive triangulation of the terrain grid. The proposed solution is suitable to build video simulators for space crew training.

https://doi.org/10.51790/2712-9942-2022-3-4-06
PDF (Russian)

References

Boletsis C. The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology. Multimodal Technologies and Interaction. 2017;1(4):1–17. DOI: 10.3390/mti1040024.

Селиванов В. В., Селиванова Л. Н. Виртуальная реальность как метод и средство обучения. Образовательные технологии и общество. 2014;17(3):378–391.

Алтунин А. А., Долгов П. П., Жамалетдинов Н. Р., Иродов Е. Ю., Коренной В. С. Направления применения технологий виртуальной реальности при подготовке космонавтов к внекорабельной деятельности. Пилотируемые полеты в космос. 2021;1(38):72–88. DOI: 10.34131/MSF.21.1.72-88.

Liu Yuqing and others. VR Simulation System for EVA Astronaut Training. Proceedings of AIAA Space 2010 Conference & Exposition. Anaheim California, 2010. DOI: 10.2514/6.2010–8696.

Cater J. P., Huffman S. D. Use of the Remote Access Virtual Environment Network (RAVEN) for Coordinated IVA-EVA Astronaut Training and Evaluation. Presence: Teleoperators & Virtual Environments. 1995;4(2):103–109. DOI: 10.1162/pres.1995.4.2.103.

Garcia A. D., Schlueter J., Paddock E. Training Astronauts Using Hardware-in-the-Loop Simulations and Virtual Reality. AIAA SciTech Forum. Orlando, FL, 2020. DOI: 10.2514/6.2020-0167.

Михайлюк М. В., Мальцев А. В., Тимохин П. Ю., Страшнов Е. В., Крючков Б. И., Усов В. М. Система виртуального окружения Virsim для имитационно-тренажерных комплексов подготовки космонавтов. Пилотируемые полеты в космос. 2020;37(4):72–95. DOI: 10.34131/MSF.20.4.72-95.

Михайлюк М. В., Торгашев М. А. Визуальный редактор и модуль расчета функциональных схем для имитационно-тренажерных комплексов. Программные продукты и системы. 2014;4:10–15.

Landau L. D., Lifshitz E. M. Mechanics. 2nd edition. Course of Theoretical Physics. Vol. 1. Pergamon Press; 1969.

Catto E. Iterative Dynamics with Temporal Coherence. In Game Developer Conference. 2005;1–24.

Scholten F., Oberst J., Matz K. D., Roatsch T., Wahlisch M., Speyerer E. J., Robinson M. S. GLD100:¨ The Near-Global Lunar 100 m Raster DTM from LROC WAC Stereo Image Data. Journal of Geophysical Research: Planets. 2012;117:1–12. DOI: 10.1029/2011JE003926.

Мальцев А. В., Тимохин П. Ю., Трушин А. М. Методы распределенной визуализации виртуальных объектов с использованием мультитекстурирования на основе смешивания материалов. Вестник кибернетики. 2018;29(1):110–115.

Lunar Reconnaissance Orbiter Camera. North of Boguslawsky Crater DTM. Режим доступа: https: //wms.lroc.asu.edu/lroc/view_rdr/NAC_DTM_BOGSLWSKY1.

Astropedia. Lunar and Planetary Cartographic Catalog. Moon LRO LROC WAC Global Morphology Mosaic 100m v3. Режим доступа: https://astrogeology.usgs.gov/search/map/Moon/LRO/LROC_WAC/Lunar_LRO_LROC-WAC_Mosaic_global_100m_June 2013.

Mikhaylyuk M. V., Timokhin P. Y., Maltsev A. V. A Method of Earth Terrain Tessellation on the GPU for Space Simulators. Programming and Computer Software. 2017;43(4):243–249. DOI: 10.1134/S0361768817040065.

Downloads

Download data is not yet available.