The Autonomous Vehicle: Implementation and Issues
PDF (Russian)


autonomous vehicle
driver assistant
neural network
SAE classification

How to Cite

Bobrovskaya O.P., Gavrilenko T.V. The Autonomous Vehicle: Implementation and Issues // Russian Journal of Cybernetics. 2022. Vol. 3, № 2. P. 86-96. DOI: 10.51790/2712-9942-2022-3-2-10.


The paper considers the autonomous vehicle development. Six autonomous driving levels are listed ranging from manual driving to a fully autonomous vehicle. The key autopilot components are presented: high-resolution maps, perception, localization, prediction, planning, control. Open-source information about 9 companies engaged in Level 0 to Level 5 autopilot development is reviewed. Errors found in the tested and operating solutions at the current stage of autonomous driving technology development are noted. The problems not yet solved are identified.
PDF (Russian)


Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Ground Vehicle Standard J3016_202104. Режим доступа:

Ashesh Jain, Luca Del Pero, Hugo Grimmett, Peter Ondruska. Autonomy 2.0: Why is Self-Driving Always 5 Years Away? Режим доступа:

Tesla AI day. Режим доступа:

Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, Cordelia Schmid. VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation. Режим доступа:

Mayank Bansal, Alex Krizhevsky, Abhijit Ogale. ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst. Robotics: Science and Systems 2019. Режим доступа:

How Openpilot Works in 2021. Режим доступа:

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, Karol Zieba. End to End Learning for Self-Driving Cars. Режим доступа:

Argo AI. Developing a Self-Driving System You Can Trust. Safety Report. Режим доступа:

Sammy Sidhu, Qiangui (Jack) Huang, Ray Gao. How Lyft Uses PyTorch to Power Machine Learning for Their Self-Driving Cars. Режим доступа:

Luca Bergamini, Vladimir Iglovikov, Filip Hlasek, Peter Ondruska. How to Build a Motion Prediction Model for Autonomous Vehicles. Режим доступа:

Савицкий Г. Взгляд на ADAS изнутри: когда поедет робот? Режим доступа:

Чистяков А. Как Яндекс делает обычные автомобили беспилотными. Режим доступа:

Apollo. Developer Center. Режим доступа:

Kecheng Xu, Xiangquan Xiao, Jinghao Miao, Qi Luo. Data Driven Prediction Architecture for Autonomous Driving and its Application on Apollo Platform. Режим доступа:

Collision Between Vehicle Controlled by Developmental Automated Driving System and Pedestrian. Tempe, Arizona, March 18, 2018. National Transportation Safety Board. 2019. Режим доступа:


Download data is not yet available.