DOI: 10.51790/2712-9942-2024-5-4-06

# ЭФФЕКТИВНОЕ СОЧЕТАНИЕ МЕТОДА ГРАНИЧНЫХ СОСТОЯНИЙ И АЛГОРИТМА ШВАРЦА ПРИ ОЦЕНКЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПОЛОСТНОГО ТЕЛА

## В. Б. Пеньков<sup>а</sup>, Л. В. Левина<sup>6</sup>, В. Н. Уланов<sup>6</sup>, А. А. Копцева<sup>2</sup>

Липецкий государственный технический университет, г. Липецк, Российская Федерация <sup>a</sup> ORCID: https://orcid.org/0000-0002-6059-1856, vbpenkov@mail.ru <sup>6</sup> ORCID: https://orcid.org/0000-0002-7441-835X, 🔊 satalkina\_lyubov@mail.ru <sup>6</sup> ulanov-vityusha@yandex.ru, <sup>2</sup> koptseva-a14@mail.ru

Аннотация: выполнена оценка эффективности использования алгоритма Шварца в комбинации с энергетическим методом граничных состояний (МГС) на каждом шаге итерационного процесса в сравнении с «прямым» использованием МГС для двухполостного упругого тела. Оценена экономия временных затрат на проведение расчетов и обнаружен высокий уровень сходимости в трехмерном случае. Комбинированный метод использован для решения задачи об оценке пределов возможной локализации сферической полости в биконусном теле при фиксированном варианте нагружения по поверхности. Сделаны выводы.

Ключевые слова: алгоритм Шварца, метод граничных состояний, МГС, оценка прочности.

Для цитирования: Пеньков В. Б., Левина Л. В., Уланов В. Н., Копцева А. А. Эффективное сочетание метода граничных состояний и алгоритма Шварца при оценке напряженно-деформированного состояния полостного тела. Успехи кибернетики. 2024;5(4):45–50. DOI: 10.51790/2712-9942-2024-5-4-06.

Поступила в редакцию: 01.10.2024.

В окончательном варианте: 05.11.2024.

# AN EFFECTIVE COMBINATION OF THE METHOD OF BOUNDARY STATES AND THE SCHWARTZ METHOD FOR EVALUATING THE STRESS-STRAIN BEHAVIOR OF A CAVITY BODY

V. B. Penkov<sup>a</sup>, L. V. Levina<sup>b</sup>, V. N. Ulanov<sup>c</sup>, A. A. Koptseva<sup>d</sup>

Lipetsk State Technical University, Lipetsk, Russian Federation <sup>a</sup> ORCID: https://orcid.org/0000-0002-6059-1856, vbpenkov@mail.ru <sup>b</sup> ORCID: https://orcid.org/0000-0002-7441-835X, 
satalkina\_lyubov@mail.ru <sup>c</sup> ulanov-vityusha@yandex.ru, <sup>d</sup> koptseva-a14@mail.ru

*Abstract:* we estimated the efficiency of the Schwartz method combined with the energy-based method of boundary states (MBS) at each step of the iterative process and compared it with the direct application of MBS to a two-cavity elastic body analysis. We found better computational performance and a high level of convergence in the 3D case. The combined approach was used to estimate the limits of possible localization of a spherical cavity in a biconical body in a given surface load case.

Keywords: Schwartz method, method of boundary states, MBS, structural analysis.

Cite this article: Penkov V. B., Levina L. V., Ulanov V. N., Koptseva A. A. An Effective Combination of the Method of Boundary States and the Schwartz Method for Evaluating the Stress-Strain Behavior of a Cavity Body. Russian Journal of Cybernetics. 2024;5(4):45–50. DOI: 10.51790/2712-9942-2024-5-4-06. Original article submitted: 01.10.2024. Revision submitted: 05.11.2024.

#### Непосредственное применение метода граничных состояний

В МГС под внутренним состоянием  $\xi$  объекта понимается избыточный набор характеристик, согласованных определяющими соотношениями среды. Граничным состоянием  $\gamma$  является след внутреннего состояния на границе тела. Множества внутренних и граничных состояний в эластостатике образуют изоморфные гильбертовы пространства  $\Xi \leftrightarrow \Gamma$  со скалярными произведениями, равными для любых изоморфных пар элементов:

$$\left(\xi^{(1)},\xi^{(2)}\right)_{\Xi} = \left(\gamma^{(1)},\gamma^{(2)}\right)_{\Gamma}, \qquad \xi^{(k)}\leftrightarrow\gamma^{(k)}.$$

Обозначим счетные базисы пространств  $\Xi$ ,  $\Gamma$  через  $\overline{\Xi}$ ,  $\overline{\Gamma}$ . При практическом применении используем конечные отрезки  $\overrightarrow{\Xi}$ ,  $\overrightarrow{\Gamma}$  этих базисов — векторы размерности  $|\overrightarrow{\Xi}| = |\overrightarrow{\Gamma}| = N$ .

В случае однополостного ограниченного объекта удобно 3D-область, занятую телом, определять как пересечение  $V = V^+ \cap V^-$ , где  $V^+$  — односвязная ограниченная область,  $V^-$  — внешность односвязной ограниченной полости. Удобство объясняется тем, что базис пространства внутренних состояний можно формировать как объединение базисов двух подпространств  $\overline{\Xi} = \overline{\Xi}^+ \cup \overline{\Xi}^-$ . Наборы состояний  $\xi^{\pm} \in \Xi^{\pm}$  формируются на основе общих решений Аржаных–Слободянского [1] разрешающей системы уравнений Ламе [2], в которых используются базисы функций, гармонических в соответствующих подобластях [3].

Обозначим через  $N^{\pm}$  мощности соответствующих множеств:  $N^{\pm} = |\vec{\Xi}^{\pm}|$ . Тогда  $N = N^{+} + N^{-}$  в силу линейной независимости элементов базиса  $\Xi$ , входящих в  $\vec{\Xi}^{\pm}$ . Далее понимаем под состояниями  $\xi$ ,  $\gamma$  наборы полевых характеристик:

$$(\xi = \{u_i, \varepsilon_{ij}, \sigma_{ij}\}, x \in V), \qquad (\gamma = \{u_i, p_i\}, x \in \partial V, p_i = \varepsilon_{ij}|_{\partial V} n_i),$$

где  $\partial V$  означает границу области V,  $\{n_i\}$  — единичный вектор внешней нормали к границе,  $\{u_i\}$  — вектор перемещения в точке  $x = \{x_1, x_2, x_3\}, \varepsilon_{ij}, \sigma_{ij}$  — компоненты тензоров деформаций и напряжений.

Скалярные произведения изоморфных гильбертовых пространств в задачах эластостатики определяются тройной формулой (тензорно-индексная форма записи):

$$\left(\xi^{(1)},\xi^{(2)}\right)_{\Xi} \equiv \int_{V} \sigma^{(1)}_{ij} \varepsilon^{(2)}_{ij} dV = \int_{\partial V} p^{(1)}_{i} u^{(2)}_{i} dS \equiv \left(\gamma^{(1)},\gamma^{(2)}\right)_{\Gamma}.$$
(1)

При практическом решении задач следует выполнить ортогонализацию изоморфных отрезков базисов  $\overrightarrow{\Xi} \leftrightarrow \overrightarrow{\Gamma}$ . В случае тела, содержащего полости, более рационально с вычислительной точки зрения пользоваться скалярным произведением в пространстве граничных состояний (на границе  $\partial V$  элементы базиса  $\overline{\Gamma}$  сингулярностей не содержат; сингулярности определены внутри области V).

Процедура ортогонализации — энергоемкая. Это обусловлено двумя причинами: 1) количество действий по вычислению кратных интегралов в скалярных произведениях существенно возрастает при увеличении N (квадратичная зависимость); 2) для достижения достаточной точности при увеличении N требуется повышать и длину мантиссы в десятичном представлении чисел.

Искомые состояния (внутренние  $\xi \in \Xi$ , граничные  $\gamma \in \Gamma$ ) ищутся в виде рядов Фурье по элементам ортонормированных базисов:

$$\xi = \sum_{k} c_k \xi^{(k)}, \qquad \gamma = \sum_{k} c_k \gamma^{(k)}, \tag{2}$$

для чего используется информация, содержащаяся в граничных условиях. Например, если на границе тела заданы поверхностные усилия  $p_i^0$ , то из (1) и (2) следует, что  $c_k = \left(p_i^0, u_i^{(k)}\right)_{\Gamma}$ .

О точности решения можно судить по двум факторам: 1) неравенство Бесселя  $\sum_k c_k^2 \leq (\gamma, \gamma)_{\Gamma}$  позволяет эффективно подобрать значение натурального N; 2) квадратичная интегральная невязка построенного приближенного решения с заданными граничными условиями напрямую свидетельствует о точности результата.

В случае смешанных ГУ использование рядов Фурье (2) приводит к бесконечной системе линейных алгебраических уравнений (при усечении базиса до размерности  $N - \kappa$  системе уравнений этой же размерности) [3]. Основная трудоемкость определяется процессом ортогонализации.

#### Эффективный алгоритм Шварца

«Алгорифм» Шварца заявлен для задач математической физики в конце 19 века [4]. Сжимаемость отображения итерационного процесса Шварца не доказана. В задачах для 2D-тел он показал достаточно медленную сходимость. Его сочетание с МГС выполнено успешно [5]: сходимость в 3Dпространствах для задач статической упругости оказалась весьма быстрой.

В случае двусвязных областей (например,  $V = V^+ \cap V^-$ ) схема алгоритма достаточно простая. <u>Шаг 0.</u> Решается краевая задача для тела, занимающего область  $V^-$ . ГУ соответствуют заданным требованиям. Отслеживаются состояния  $\xi_{\langle 0 \rangle}^- \leftrightarrow \gamma_{\langle 0 \rangle}^-$ . Форма границы  $\partial V^+$  позволяет оценить след  $\overline{\gamma}^+$  состояния  $\xi^-_{\langle 0 \rangle}$  и внести поправку в ГУ на  $\partial V^+$ . После этого решается краевая задача для  $\partial V^+$  со скорректированными ГУ и строятся состояния  $\xi^+_{\langle k \rangle} \leftrightarrow \gamma^+_{\langle k \rangle}$ .

Шаг k. Оценивается поправка  $\overline{\gamma}^+$  для ГУ на  $\partial V^-$  и выполняется коррекция ГУ в задаче для  $V^-$ . Решается краевая задача для  $V^-$ , вычисляется след  $\overline{\gamma}^+$  от  $\xi_{\langle k \rangle}^-$  на  $\partial V^+$ , вносится поправка в ГУ задачи для области  $V^+$ . Строится  $\xi_{\langle k \rangle}^+ \leftrightarrow \gamma_{\langle k \rangle}^+$ . Оценивается уровень поправок, выполненных на шаге k. Если он достаточно высок, то осуществляется переход к шагу k + 1. В противном случае итерационный процесс можно считать оконченным.

Эффективность алгоритма Шварца подтверждается рядом факторов:

1) процесс ортогонализации методом Грама–Шмидта [6] состоит в преобразовании матрицы Грама, состоящей из скалярных произведений всех элементов удерживаемого отрезка базиса состояний. В «прямом» подходе требуется вычислять  $\nu = (N^+ + N^-) (N^+ + N^- + 1)/2$  кратных интегралов. При подходе Шварца объект вычислений существенно ниже:  $\nu = (\nu^+ + \nu^-), \nu^{\pm} = N^{\pm} (N^{\pm} + 1)/2$ ;

2) для выписывания ортонормированного базиса в «прямом» подходе строится матрица Шмидта *S*, умножением слева на которую исходные базисы преобразуются в ортонормированные:

$$\overrightarrow{\Xi}_0 = S \overrightarrow{\Xi}, \qquad \overrightarrow{\Gamma}_0 = S \overrightarrow{\Gamma}.$$

В «прямом» подходе размерность матрицы S равна  $\nu$ . При проведении ортогонализации требуется объем вычислений, приближенно оцениваемый квадратом числа  $\nu$ , т.е.  $\nu^2 = (\nu^+ + \nu^-)^2$ . В подходе Шварца для матриц S<sup>±</sup> имеем соответствующие оценки трудоемкости  $(\nu^+)^2$ ,  $(\nu^-)^2$ . Этот объем вычислений меньше практически вдвое;

3) для обеспечения вычислительной точности надо в представлении чисел удерживать длину мантиссы, обеспечивающую требуемое значение значащих цифр в результатах счета. Опыт показал значительный рост потребной длины мантиссы в зависимости от  $\nu$  и, как следствие, нелинейно возрастающие временные затраты на проведение операций. Этот фактор существенно подчеркивает эффективность подхода Шварца;

4) процедура ортогонализации базисов как в «прямом» подходе, так и в алгоритме Шварца выполняется единственный раз, поскольку корректировка ГУ влияет только на формирование вектора правых частей разрешающей системы линейных алгебраических уравнений. В основных задачах теории упругости этот вектор уже является набором искомых коэффициентов Фурье. В методе Шварца в комбинации с МГС преобразование смешанных ГУ в разрешающую систему уравнений достаточно выполнить только на первом шаге приближения. На всех последующих шагах удобно пользоваться аппаратом решения любой основной задачи средствами МГС;

5) практически установлена весьма быстрая сходимость алгоритма Шварца (2÷4 итерации) для многополостных ограниченных 3D-тел [5].



Рис. 1. Полостной биконус

#### Напряженно-деформированное состояние полостного биконуса

Рассматривается однородное изотропное упругое тело в форме биконуса, содержащего сферическую полость (рис. 1). Положение полости варьируется вдоль оси биконуса параметром h. Требуется оценить влияние положения полости на НДС тела и установить предельное значение положения цен-



**Рис. 2.** Купюры полей напряжений:  $\sigma_r$  — радиальное,  $\sigma_{\theta}$  — окружное,  $\sigma_z$  — осевое,  $\sigma_{z\theta}$  — сдвиговое напряжения

тра полости, допускающее упругое состояние предразрушения. Граничные условия: боковые поверхности — свободны от нагрузки, полость нагружена постоянным внутренним давлением *p*<sub>0</sub>.

Расчеты выполнялись для определяющих соотношений, представленных в обезразмеренной форме. Параметры обезразмеривания:  $\mu$  — модуль сдвига, R — радиальный размер оснований конусов. Величина  $p_0$  является масштабом на графиках, отображающих все напряжения, кроме интенсивности напряжений  $\sigma_i$ .

Расчеты выполнялись для трех вариантов безразмерного параметра  $h \in \{0, 0.125, 0.25\}$ . На рис. 2 приведен вариант для h = 0.25 и безразмерного радиуса сферической полости 0.25. Приведены иллюстрации для радиального  $\sigma_r$ , окружного  $\sigma_{\theta}$ , осевого  $\sigma_z$ , сдвигового  $\sigma_{z\theta}$  напряжений. Линии уровня помечены долями от  $p_0$ . Нулевой уровень напряжений соответствует фону сечения биконуса (внутренность полости, внешность биконуса).

Сравнение результатов итерационного процесса свидетельствует о весьма быстрой сходимости процесса Шварца (результаты второй итерации слабо отличаются от первой).

Оценка возможности появления критического состояния, вызывающего разрушение тела либо нарушения его функциональной способности из-за перехода в пластическое состояние, выполнена на основе расчета значения интенсивности напряжений (рис. 3, 4).



Заданный характер нагружения свидетельствует о том, что наибольшие значения  $\sigma_i$  достигаются на границе полости. Характер их распределения в зависимости от угла  $\alpha \in [-\pi/2, \pi/2]$  широтной координаты полости для трех значений h приведен на рис. 4. Горизонтальная пунктирная линия условно обозначает предельное значение  $\sigma_i$ , превышение которого недопустимо. Серия графиков зависимости интенсивности напряжений от широты позволяет судить о функциональной допустимости локализации центра полости на высоте h.

Эффективным средством проведения вычислений зарекомендовала себя система Mathematica [7], поддерживающая «компьютерную алгебру».

**Выводы:** 1) использование «прямого» подхода требует существенных энергетических затрат: значительный рост величины мантиссы в представлении чисел при вычислениях и квадратично возрастающее время счета с ростом размерности удерживаемого отрезка базиса пространства внутренних состояний, в первую очередь, при проведении ортогонализации; 2) подход Шварца существенно снижает временные затраты и, несмотря на итерационность и отсутствие доказательства сжимаемости отображений при итерациях, приводит к цели гораздо эффективнее; 3) анализ зависимости НДС от параметров нагружения позволяет установить предельно допустимые значения варьируемых параметров при обеспечении прочности; 4) наличие сингулярностей формы тела (криволинейные ребра, конические тачки) требует разработки методов построения специальных решений для учета их влияния на НДС.

### ЛИТЕРАТУРА

- 1. Лурье А. И. Теория упругости. М.: Наука; 1970. 940 с.
- 2. Работнов Ю. Н. Механика деформируемого твердого тела. М.: Наука; 1979. 744 с.
- 3. Penkov V. B., Satalkina L. V., Shulmin A. S. The Use of the Method of Boundary States to Analyse an Elastic Medium with Cavities and Inclusions. *Journal of Applied Mathematics and Mechanics*. 2014;78(4):384–394.
- 4. Schwarz H. A. Über einige Abbildungsaufgaben. Ges. Math. Abh. 1869;11:65-83.
- 5. Пеньков В. Б., Рыбакова М. Р., Левина Л. В. Применение алгорифма Шварца к пространственным задачам теории упругости. Известия ТулГУ. Естественные науки. 2015;3:165–176.
- 6. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: ФИЗ-МАТЛИТ; 2004. 517 с.
- 7. Курбатов В. Г., Чернов В. Е. Пакет «Математика» в прикладных научных исследованиях: учебное пособие. Воронеж: Издательский дом ВГУ; 2016. 241 с.

Эффе