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Abstract: structural strength of aircraft is a key aspect of flight safety. Hidden defects in the
material significantly affect its strength under various loads. The crack growth rate and direction, and the
crack growth threshold load (stress intensity factor) affect the strength of the damaged material. This study
investigates a 3D elastic structure weakened by a system of flat cracks and a kinked crack. The numerical
method used was the boundary element method, specifically, the displacement discontinuity method. The
code was developed with C++. The results were compared against the available analytic results. The
behavior of cracks under bending and a range of loading conditions was studied.
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Аннотация: прочность летательных аппаратов любых типов — важнейший вопрос безопасно-
сти полетов. Наличие скрытых дефектов в материале существенно влияет на прочность при различ-
ных нагрузках. Важными характеристиками прочности материалов с дефектами являются скорость и
направление роста трещины, а также величина критической нагрузки (коэффициента интенсивности
напряжений), при которой начинается рост трещины. В данной работе исследуется трехмерная упру-
гая среда, ослабленная системой плоских трещин и одной трещиной с изгибом. В качестве численного
метода был выбран метод граничных элементов, а именно метод разрывных перемещений. Код ре-
ализован на C++. Было проведено сравнение с известными аналитическими результатами. Изучено
поведение трещин при изгибе при различных нагрузках.
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Introduction
Structures can experience planned and random external loads that affect their safety [1]. The

study of the strength of aircraft structures is a complex process, which can be considered from different
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perspectives. The study of strength under different types of loads is presented in [2, 5], and the strength
under high-temperature loads is discussed in [3]. There have also been studies in which the spatial failure of
the membrane has been investigated [6]. The problem of asteroid destruction during their interaction with
impact or explosive missiles is also relevant [4]. Data on the presence of micro defects inside asteroids
help us to understand where the heterogeneities are located. This allows us to predict where the impactor
should be directed to blow up the asteroid, getting the maximum effect at minimum cost. The development
of such missions requires predictive numerical modeling, which relies heavily on the science of strength
of materials and structures, particularly linear fracture mechanics. The foundations of this theory were
developed in [7, 8]. The primary cause of fracture is the presence of defects in the material in the form of
so-called cracks, which are simulated by the displacement field jump on a certain part of the surface. For
an elastic medium, this leads to the appearance of features at the crack boundary. When approaching the
crack boundary, the stresses tend to infinity, i.e. the concentration of stresses occurs in a sufficiently small
vicinity of the boundary. Since the existence of infinite stresses in real materials is impossible, a region of
irreversible plastic deformations occurs near the crack edges. Nevertheless, in cases where the size of this
field is small compared to the size of the crack itself, the applicability of the crack growth criteria is based
on the analysis of the elastic solution obtained [9–14]. Linear fracture mechanics has developed rapidly
and is currently one of the main tools for assessing the strength of materials with defects. A sufficiently
complete picture of the results obtained in this field is given by the reviews [14–18].

We use the three fundamental solutions of the theory of elasticity about the discontinuity of the three
components of the displacement vector on the surface of the boundary element as the basic functions of the
solution decomposition. The general solution of the entire problem is represented as a sum with indefinite
coefficients, i.e., as a finite series of analytically defined basis functions. The coefficients of the series are
determined by the collocation method on the boundary (the boundary conditions are fulfilled only in the
centers of boundary elements). This approach makes it possible to avoid calculating singular integrals that
arise when using direct methods of boundary integral equations.

The advantage of the boundary element method is that only the fracture surface, modeling the
fracture of the elastic medium, is broken into finite elements. This reduces the scale of the problem at the
stage of its solution. Three independent analytical solutions are used for each element, in each of which
one of the three displacement vector components suffers a discontinuity in the element. The solution to a
particular boundary value problem is sought as a series with uncertain coefficients over the entire set of
elements. Each element solution contributes to the displacement field and the stress field with a weight,
which is the corresponding uncertain coefficient of the series. Fulfilling the specific boundary conditions
leads to a system of linear equations after numerically determining the expansion coefficients. We have an
analytical representation of the solution as a finite series within the domain. In terms of memory, we only
need to save the found expansion coefficients, which will then allow us to find any desired characteristics
at any point in the solution domain. This is important in terms of the ease of practical use of the resulting
solution. Another important advantage of the proposed method is the possibility to solve any boundary value
problem (stress problem, displacement problem, any mixed problem).

The disadvantage of the method is its weak mathematical reliability; therefore, a large amount
of work is required to verify the reliability of the results. For this purpose, a comparison was made
with the available analytical solutions of spatial problems, as well as with the known results of numerical
solutions of fracture mechanics problems obtained by other numerical methods. The program codes have
been implemented by the authors in C++. The main characteristic of linear fracture mechanics is the stress
intensity coefficient at the crack edge (Fig. 1), which in the case of tensile strain in the direction normal to
the crack plane is defined as

KI = lims→0

√
2πs · σzz (s) ,

in the case of shear deformation in the crack plane along the normal to its edge is defined

KI I = lims→0

√
2πs · σnz (s) ,

and in the case of antiplane deformation (shear in the crack plane tangential to the edge) is determined.

KI I I = lims→0

√
2πs · στz(s).
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This problem was solved numerically in the three-dimensional formulation for different radii. The
comparison results allow us to speak about sufficient efficiency and satisfactory accuracy of the proposed
method [22].

Figure 1. Determination of the stress intensity coefficients for the cases of different types of deformations

The written program was tested by comparing it with known analytical solutions [15–16], [19–21].
The comparison showed good qualitative and quantitative agreement with the available results of other
authors. For example, a comparison was made with the solution for an axisymmetric crack in the form
of a disk, which is under the action of internal pressure. In the cylindrical coordinate system r,ϕ,z (the
crack corresponds to the disk z= 0,0 ≤ r ≤ R) and in the given problem we have boundary conditions:
z= 0,0 ≤ r ≤ R,σzz= − p,σrz= 0. In the analytical solution for a circular crack the value KI is equal to:

KI=
2√
πR

R∫︁
0

rσzz(r)dr√
R2 − r2

.

Circular fracture with fracture (fracture angle 30∘) is under internal pressure p = 0.1
Of some practical interest are cracks, the surface of which has a fracture (the angle between the

planes of individual segments of the crack is different from zero). Such a geometric configuration can arise
at the merger of two separate plane cracks. In linear elasticity theory, the presence of any jumps in the
boundary conditions leads to peculiarities in the solution. Since the crack model itself (the discontinuity
surface of the displacement field) carries a peculiarity of the solution, it is interesting to investigate the
effect of a possible kink in its surface on the change in the stress distribution in the vicinity of the crack
edge.

We consider an elastic medium weakened by a fracture crack. The crack is active, that is, it is loaded
with internal pressure P, as shown in Fig. 2. Geometrically, the surface of the crack is two semicircles of
the same radius, the planes of which are located at a given angle to each other. It is necessary to investigate
in which direction the crack is most likely to grow.

The value of the J-integral of Cherepanov-Rice is taken as the main characteristic responsible for
the possible crack growth. This integral is a combination of the squares of the stress intensity coefficients
(Cherepanov and Rice) [11–13]:

J =
1 − ν

2µ

(︁
K2

I + K2
I I

)︁
+

1
2µ

K2
I I I .

Since in the geometric configuration under consideration the two halves of the crack are equal, the edge
of that half of the crack, which is located in the plane xy(Fig. 2), has been studied. In the calculations,
dimensionless quantities have been used: the length unit is the radius of half-circle of each half of the
crack; stresses and pressure have been referred to the value 2µ, Poisson’s ratio has been chosen to equal
ν = 0.25. The internal pressure is assumed to be p = P/2µ = 0.1. Such an unrealistically large pressure
has been chosen to make it possible to visualize the crack opening. The angle between the planes of two
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Figure 2. Crack with fracture under internal pressure, directed along the normal to the banks of the crack

planar semicircular segments of the crack is called a fracture angle. For comparison, the calculations for
two fracture angles with values 30∘ and 60∘.

Fig. 3 shows graphs of the value J vs. the angle. The angle is counted along the arc of the
circular edge of the crack and varies within [−π/2,π/2]. The zero value of the angle corresponds to the
point x = −1,y = 0,z = 0 (Fig. 2), the value of the angle π/2− corresponds to a point with coordinates
x = 0,y = 1,z = 0, the angle −π/2 corresponds to a point with coordinates x = 0,y = −1,z = 0. The last
two points are on the fracture line, which is part of the axis y(Fig. 2). Fig. 3a shows the curve J for the
break angle 30∘, Fig. 2b shows the curve for the break angle 60∘.

(a) (b)

Figure 3. J-integral on the interval
(︀
−π

2 ; π2
)︀
, a is for the break angle 30∘, b is for the break angle 60∘

As follows from the dependencies in Fig. 3 a and b dependences, the maximum values J for both
angles are reached at the points lying on the fracture line, i.e., on the axis y. This means that possible crack
growth will develop in the directions of the fracture line. As the fracture angle increased, the maximum J-
integral increased and the minimum decreased. The effect of the fracture angle on the qualitative appearance
of the J-integral distribution curve is insignificant.
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Fig. 4 shows the crack opening in the fracture section x = 0. The opening is understood as the
value of the difference of displacements corresponding to the upper and lower banks of the crack. Fig. 4a
and 4b show the three-dimensional opening of half of the crack (points of different colors correspond to the
upper and lower banks) for the 30∘ and 60∘ fracture angles. The solid curve shows the position of the points
in the fracture section. As can be seen, the effect of the fracture angle on the opening is also insignificant.

Fig. 5 shows the opening of the entire crack in the section y = 0 (Fig. 5a corresponds to the
fracture angle 30∘, Fig. 5b to the fracture angle 60∘). The above results allow us to conclude that the crack
opening is mainly determined by pressure and weakly depends on the fracture angle.

(a) (b)

Figure 4. Crack opening in space (a is the fracture angle 30∘, b is the fracture angle 60∘). The solid
curve corresponds to the points of the section x = 0

(a) (b)

Figure 5. Crack opening in the section y = 0 (a is the fracture angle 30∘, b is the fracture angle 60∘)
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The graphs (Figs. 4–5) show that the maximum opening is achieved in the fracture section x = 0.
This corresponds to the results of the location of the maximum values of the J-integral and the directions of
possible crack growth along the axis y.

It is known that in the vicinity of the crack boundary the stresses have a feature σ ∼ !
⧸︀√

s, where
s− is the distance to the crack edge. To control the stresses, their calculation was made in the cylindrical
coordinate system r,ϕ,z for angles ϕ ∈ [π/2,3π/2], corresponding to the boundary of the semicircle
z = 0, x2 + y2 = R2, x ≤ 0. The value of radius was taken as the value of R = 1.01. This corresponds
to the value of the distance s o the boundary equal to s = 0.01.

The graphs of stress distribution along the crack edge, depending on the angular coordinate φ in
the polar coordinate system, are shown in Fig. 6 (a corresponds to the fracture angle 30∘, b to the fracture
angle 60∘).

(a) (b)

Figure 6. Stress σzz,σrϕ,σrz vs. angular coordinate ϕ along the crack boundary in the cylindrical
coordinate system (r,ϕ,z) , r = 1.01, π/2 ≤ ϕ ≤ 3π/2, z = 0 (a is the fracture angle 30∘, b is the fracture

angle 60∘)

It can be seen (Fig. 6) that the stresses σzz do not depend on the fracture angle. The stresses
differ greatly at σrz. That is, these calculations show that the growth of the J-integral when approaching the
fracture is mainly provided by the growth of the stress σrz. Thus, the crack will grow in the direction of the
fracture line if the fracture criterion is met.

To check the influence of the crack loading method, calculations have been made in which the crack
sides are free from loads, with the elastic space subjected to tension by stresses acting at infinity along the
axis z. That is, an elastic medium weakened by a fracture crack is considered. The angle of the fracture
is known and is equal to 30 ∘. At infinity, a tensile load σ = 0.1, perpendicular to the plane of one of the
fracture parts, is applied, as shown in Fig. 7.

Fig. 8 shows plots of the stress intensity coefficients KI , KI I , KI I I respectively. The intensity
coefficients were calculated by the displacement method using asymptotic formulas:

uz =
KI

µ

√︂
r
2π

sin
θ

2

(︂
2 − 2ϑ− cos2 θ

2

)︂
ux =

KI I

µ

√︂
r
2π

sin
θ

2

(︂
2 − 2ϑ+ cos2 θ

2

)︂
uy =

KI I I

µ

√︂
r
2π

sin
θ

2
.
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Figure 7. Crack with fracture 30∘, the load is applied in the direction of the OZ axis

The graphs show the distribution of the corresponding coefficients on the interval (−π/2,π/2). The zero
angle corresponds to the fracture boundary point x = −1,y = 0,z = 0, the angles (−π/2,π/2) correspond
to the fracture points of the boundary.

(a) (b) (c)

Figure 8. Distribution of intensity coefficients: a – KI , b – KI I , c – KI I I

J-integral and the stress distribution along the boundary of the crack segment perpendicular to the
axis of z in the cylindrical coordinate system are presented in Figs. 9 a, b, respectively. As in the previous
cases, the value of the distance to the crack edge was used s = 0.01.

The above calculations show a very strong dependence of the problem on the nature of the load.

Conclusions

1. Fracture cracks always start to grow along the fracture line, regardless of the type of load.
2. If the fracture crack is under pressure, its opening and stress distribution weakly depend on the

fracture angle (they are slightly larger with a larger fracture angle).
3. The stresses are very much dependent on the nature of the crack load. If the fracture crack is passive

and the load is applied at infinity, the stresses in the vicinity of the crack are very different.
4. The crack under load applied at infinity is less stable. This follows from a comparison of the value

of the combination of stress intensity coefficients for a crack under pressure and a crack in space subjected
to tension at infinity.
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(a) (b)

Figure 9. a – J-integral, b – stress distribution
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