DOI: 10.51790/2712-9942-2023-4-3-01

КРИТИЧЕСКИЕ ПОКАЗАТЕЛИ СПИНОВОЙ МОДЕЛИ НА ПОЛНОСВЯЗНОМ ГРАФЕ ПРИ НАЛИЧИИ АНТИФЕРРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ

Б. В. Крыжановский a , В. И. Егоров $^{\delta}$

Федеральное государственное учреждение «Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук», г. Москва, Российская Федерация ^a kryzhanov@mail.ru, ⁶ № rvladegorov@rambler.ru

Аннотация: рассмотрена спиновая система на полносвязном графе, состоящая из двух взаимодействующих подансамблей: спины, принадлежащие одну и тому же подансамблю, взаимодействуют ферромагнитным образом, а перекрестное взаимодействие между спинами разных подансамблей – антиферромагнитное. Введено условие сбалансированности системы, означающее, что число ближайших соседей для спина первого подансабля равно числу ближайших соседей у спина во втором подансамбле. Показано, что критические показатели и функция скейлинга сбалансированной системы кардинально отличаются от классических, присущих несбалансированной системе. Полученные результаты подтверждаются Монте-Карло симуляцией трехмерной слоистой спиновой модели, проведенной для сбалансированной и несбалансированной систем.

Ключевые слова: фазовый переход, слоистая среда, критическая температура, антиферромагнетик, полносвязный граф.

Благодарности: работа выполнена в рамках государственного задания Φ ГУ Φ НЦ НИИСИ РАН по теме № FNEF-2022-0003.

Для цитирования: Крыжановский Б. В., Егоров В. И. Критические показатели спиновой модели на полносвязном графе при наличии антиферромагнитного взаимодействия. *Успехи кибернетики*. 2023;4(3):7-18. DOI: 10.51790/2712-9942-2023-4-3-01.

Поступила в редакцию: 28.07.2023.

В окончательном варианте: 10.09.2023.

CRITICAL VARIABLES OF THE SPIN MODEL ON THE COMPLETE GRAPH IN THE PRESENCE OF ANTIFERROMAGNETIC INTERACTION

B. V. Kryzhanovsky^a, V. I. Egorov^b

Federal State Institution "Scientific Research Institute for System Analysis of the Russian Academy of Sciences", Moscow, Russian Federation

^a kryzhanov@mail.ru, ^b in rvladegorov@rambler.ru

Abstract: we studied the spin system on the complete graph consisting of two interacting sub-ensembles. The spins that belong to the same ensemble have ferromagnetic interactions; the inter-ensemble interactions are antiferromagnetic. We introduced the "balanced system" term, which defines the equality of the number of the nearest neighbors for spins of different sub-ensembles. It is shown that the critical variables and the scaling function are different from the classical ones of the unbalanced system. These results are confirmed by the Monte-Carlo simulation of the 3D layered spin model for both balanced and unbalanced systems.

Keywords: phase transitions, layered media, critical temperature, antiferromagnetic material, complete graph.

Acknowledgements: this study is a part of the FNEF-2022-0003 government order contracted to the Scientific Research Institute for System Analysis of the Russian Academy of Sciences.

Cite this article: Kryzhanovsky B. V., Egorov V. I. Critical Variables of the Spin Model on The Complete Graph in the Presence of Antiferromagnetic Interaction. *Russian Journal of Cybernetics*. 2023;4(3):7–18. DOI: 10.51790/2712-9942-2023-4-3-01.

Original article submitted: 28.07.2023.

Revision submitted: 10.09.2023.

Ввеление

Магнитные свойства многослоевых суперрешеток активно изучаются как теоретически, так и экспериментально. Особое внимание уделяется многослойным структурам, состоящим из тонких слоев различных ферромагнитных и антиферромагнитных материалов [1–3]. Примером такой структуры

являются материалы с чередованием ферромагнитных и неферромагнитных слоев. При этом толщина неферромагнитного слоя подбирается таким образом, чтобы дальнодействующее обменное взаимодействие между ферромагнитными слоями имело антиферромагнитный характер [4]. Материалы такого типа обладают гигантским магнитосопротивлением. В работах [5, 6] представлено теоретическое исследование на основе модели Гейзенберга ферромагнитных слоистых структур с антиферромагнитным межслоевым взаимодействием. В этих работах показано, что в данной системе может существовать множество различных фаз: ферромагнитная, антиферромагнитная, парамагнитная, завихренная. В работах [7, 8] было исследовано влияние слабого взаимодействия между двумя квадратными изинговыми решетками на фазовые переходы в них. Если в материале чередуются слои различных ферромагнитных материалов, то возможно возникновение температуры компенсации, то есть температуры ниже критической, при которой полная намагниченность решетки равна нулю [9–11].

В последнее время большое внимание уделяется исследованию спиновых систем с конкурирующими ферро- и антиферромагнитными взаимодействиями или наличием разупорядывающих взаимодействий между различными группами спинов [12–15]. Такие системы обычно имеют очень сложную поверхность свободной энергии с множеством локальных минимумов, отделенных от глобального глубокими потенциальными барьерами.

В данной работе рассмотрена спиновая система на полносвязном графе, имеющая, помимо глобального, ещё и локальный минимум энергии. Спины исследуемой системы разделены на две подгруппы (подансамбля). Взаимодействие спинов внутри подансамбля полагается ферромагнитным, а спины разных подансамблей могут взаимодействовать как ферромагнитно, так и антиферромагнитно. Для сравнения свойств рассматриваемой модели с реальными решетками было проведено Монте-Карло моделирование слоистой модели, где взаимодействие внутри слоя является ферромагнитным, а взаимодействие между спинами разных групп – антиферромагнитным. Результаты компьютерной симуляции подтверждают предсказания рассмотренной здесь модели.

Описание модели

Рассмотрим спиновую систему, определенную на полносвязном графе, разбитую на две группы I и II с числом спинов p_1N и p_2N в каждой ($N=p_1N+p_2N$, $p_1+p_2=1$). Связь между спинами в первой группе задана величиной $J_{11}=a_1/N$, связи во второй группе – величиной $J_{22}=a_2/N$, а перекрестные связи между спинами первой и второй групп – величиной $J_{12}=c/N$.

Для определенности дальнейших рассуждений будем считать, что взаимодействие спинов внутри каждой из групп ферромагнитное, между спинами разных групп – антиферромагнитное, а направление внешнего магнитного поля H выбираем положительным: $a_1 \ge 0$, $a_2 \ge 0$, $c \le 0$, $H \ge 0$. Случай c > 0 мы не рассматриваем, так как он детально исследован во множестве работ (см. ссылки в [17–19]).

Энергия такой системы, приходящая на один спин, имеет вид:

$$E = -\frac{1}{2} \left(a_1 p_1^2 m_1^2 + 2c p_1 p_2 m_1 m_2 + a_2 p_2^2 m_2^2 \right) - H(p_1 m_1 + p_2 m_2), \tag{1}$$

где

$$m_1 = \frac{1}{Np_1} \sum_{i=1}^{Np_1} \sigma_i, \quad m_2 = \frac{1}{Np_2} \sum_{j=1}^{Np_2} \sigma'_j, \quad M = p_1 m_1 + p_2 m_2.$$
 (2)

Здесь $\sigma=\pm 1$ и $\sigma'=\pm 1$ – значения спинов групп I и II, соответственно, m_1 и m_2 – парциальные намагниченности этих групп, а M – полная намагниченность системы. Суммы в (2) берутся по всем спинам соответствующих групп. Отметим, что выражение (1) в точности повторяет вид гамильтониана, исследуемого в теории среднего поля [17]. Соответственно, все получаемые здесь выражения мы будем сравнивать с теорией среднего поля.

Свободная энергия (нормированная на один спин) задается выражением [18]:

$$F = p_1 S_1 + p_2 S_2 + KE, (3)$$

где К – обратная температура и введены обозначения:

$$S_i = \frac{1+m_i}{2} \ln \frac{1+m_i}{2} + \frac{1-m_i}{2} \ln \frac{1-m_i}{2}, \quad i = 1, 2,$$
(4)

а уравнения состояния ($\partial F/\partial m_1 = 0$, $\partial F/\partial m_2 = 0$) имеют вид:

$$\frac{1}{2K} \ln \frac{1+m_1}{1-m_1} = a_1 p_1 m_1 - |c| p_2 m_2 + H$$

$$\frac{1}{2K} \ln \frac{1+m_2}{1-m_2} = a_2 p_2 m_2 - |c| p_1 m_1 + H$$
(5)

Определим критическую температуру фазового перехода K_c . В случае $c \neq 0$, полагая H = 0 и $m_1 \to 0, m_2 \to 0$ ($K \to K_c$), из (5) получим:

$$K_c = \frac{2}{a_1 p_1 + a_2 p_2 + \sqrt{(a_1 p_1 - a_2 p_2)^2 + 4p_1 p_2 c^2}}.$$
 (6)

Случай c=0 мы рассматривать не будем, поскольку это тривиальная задача о системе, разбитой на две невзаимодействующие подсистемы.

Условие баланса. «Критическое» значение $c=\bar{c}$

Сбалансированной мы будем называть систему, в которой эффективное число «ближайших соседей» у спина в первом подансамбле равно эффективному числу «ближайших соседей» у спина во втором подансамбле (здесь и далее мы используем термины из теории среднего поля [17]). Это равенство имеет вид:

$$a_1p_1 + cp_2 = a_2p_2 + cp_1. (7)$$

Действительно, спин первого подансамбля имеет a_1p_1 соседей из этого же подансамля и cp_2 соседей из другого подансамбя. Аналогично и для спина из второго подансамбля. Мы используем термин «эффективное» число соседей, поскольку соседи с антиферромагнитным взаимодействием вносят отрицательный вклад в это число.

Условие баланса (7) возможно только при определенном соотношении параметров взаимодействия. Для симметричной системы, в которой $a_1=a_2$, из (7) следует, что система сбалансирована при любом значении c.

В более общем случае $(p_1 \neq p_2)$ условие сбалансированности (7) можно записать в виде $c = \bar{c}$, где $\bar{c} < 0$ есть некоторое «критическое» значение антиферромагнитного взаимодействия:

$$\bar{c} = \frac{a_1 p_1 - a_2 p_2}{p_1 - p_2}, \quad \bar{c} < 0.$$
(8)

Отметим, что система может быть сбалансированной только в определенной области изменений параметров $p_{1,2}$ и $a_{1,2}$. Действительно, из (8) следует, что условие антиферромагнитности $\bar{c} < 0$ можно записать в виде:

$$\bar{c} < 0$$
 if
$$\begin{cases} \frac{a_2}{a_1 + a_2} \le p_1 < \frac{1}{2} &, a_1 \ge a_2 \\ \frac{1}{2} < p_1 \le \frac{a_2}{a_1 + a_2} &, a_1 \le a_2 \end{cases}$$
 (9)

Ниже мы будем использовать обозначение \bar{c} , чтобы соотношениями $c=\bar{c}$ или $c\neq\bar{c}$ подчеркивать, что описывается сбалансированная или несбалансированная система. Дальнейший анализ показывает, что термодинамические характеристики существенно разнятся у сбалансированной и несбалансированной систем.

Критические показатели

Рассмотрим поведение физических величин вблизи критической температуры, обращая особое внимание на разницу в критических показателях в общем случае ($c \neq \bar{c}$) и в случае «критического» антиферромагнитного взаимодействия ($c = \bar{c}$).

Введем в рассмотрение относительную температуру:

$$t = \frac{T - T_c}{T_c} = \frac{K_c - K}{K}. ag{10}$$

1. Спонтанная намагниченность. Критический показатель eta

і). Случай несбалансированной системы ($c \neq \bar{c}$). Рассмотрим уравнения состояния (5) при H=0 и $m_{1,2}\to 0$. Проведем там разложение по малым параметрам $m_{1,2}$ с точностью до членов порядка $m_{1,2}^3$ и t. Тогда для парциальных намагниченностей вблизи критической температуры ($K>K_c$) получим:

$$m_1^2 = -3tD_1, \quad m_2^2 = -3tD_2,$$
 (11)

где

$$D_{1} = \frac{p_{2}(1 - K_{c}a_{2}p_{2}) \left[2 - K_{c}(a_{1}p_{1} + a_{2}p_{2})\right]}{p_{1}(1 - K_{c}a_{1}p_{1})^{2} + p_{2}(1 - K_{c}a_{2}p_{2})^{2}}.$$

$$D_{2} = \frac{p_{1}(1 - K_{c}a_{1}p_{1}) \left[2 - K_{c}(a_{1}p_{1} + a_{2}p_{2})\right]}{p_{1}(1 - K_{c}a_{1}p_{1})^{2} + p_{2}(1 - K_{c}a_{2}p_{2})^{2}}$$
(12)

Полная спонтанная намагниченность M_0 определяется следующим выражением:

$$M_0 = p_1 m_1 + p_2 m_2 = \pm \sqrt{-3t} \left(p_1 \sqrt{D_1} - p_2 \sqrt{D_2} \right). \tag{13}$$

Здесь мы учли, что при H=0 и c<0 имеет место соотношение $m_1m_2<0$.

іі). Случай сбалансированной системы ($c = \bar{c}$). В этом случае $p_1\sqrt{D_1} = p_2\sqrt{D_2}$ и выражение в скобках в уравнении (13) принимает нулевое значение. Это означает, что в выражениях, получаемых при разложении уравнений состояния (5), необходимо сохранять члены порядка t^2 . Спонтанная намагниченность вблизи критической температуры в этом случае будет описываться выражением:

$$M_0 = \pm (-t)^{\frac{3}{2}} \frac{\sqrt{3} \, p_1 p_2 (p_1 - p_2)}{K_C \, |\bar{c}| \, (1 - 3p_1 p_2)^{3/2}}.$$
 (14)

Таким образом, в несбалансированной системе ($c \neq \bar{c}$) критический показатель имеет вид $\beta = 1/2$, что согласуется с результатами классической теории среднего поля. В сбалансированной системе ($c = \bar{c}$) критический показатель принимает «неклассическое» значение $\beta = 3/2$.

2. Скачок теплоемкости (H = 0). Критический показатель α

В критической точке теплоемкость C испытывает конечный скачок. Действительно, при t>0 теплоемкость C=0, а при $t\to 0^-$ величину $C=-K\,dE/dK$ легко вычислить, используя выражения (1) и (5). Тогда для скачка теплоемкости в критической точке в общем случае получим:

$$\Delta C = \lim_{t \to 0^{-}} C = \frac{3}{2} K_c p_1 p_2 \frac{(a_1 p_1 - a_2 p_2)^2 + 4p_1 p_2 c^2}{p_1 (1 - K_c a_1 p_1)^2 + p_2 (1 - K_c a_2 p_2)^2}.$$
 (15)

В частном случае сбалансированной системы ($c = \bar{c}$) выражение (15) принимает вид:

$$\Delta C = \frac{3}{2K_c} \frac{p_1 p_2}{p_1^3 + p_2^3}. (16)$$

Так как теплоемкость стремится к конечному значению в критической точке, то классическое определение критического показателя α теряет смысл. В этом случае следует пользоваться альтернативным определением [17]: $F(K_c-t)-F(K+t)\sim t^{2-\alpha}$ при $t\to 0$. Из этого следует $\alpha=0$, что согласуется с классической моделью среднего поля. Причем этот результат не зависит от величины антиферромагнитного взаимодействия, т. е. справедлив как при $c=\bar{c}$, так и при $c\neq\bar{c}$.

3. Восприимчивость χ (H=0). Критические показатели γ и γ'

Рассмотрим поведение восприимчивости системы вблизи критической точки при H=0. Определим полную и парциальные восприимчивости следующим образом:

$$\chi = \frac{\partial M(K, H)}{\partial H} = p_1 \chi_1 + p_2 \chi_2, \quad \chi_1 = \frac{\partial m_1(K, H)}{\partial H}, \quad \chi_2 = \frac{\partial m_2(K, H)}{\partial H}.$$
 (17)

Дифференцируя уравнения состояния (5) по H и разрешая полученные уравнения относительно χ_1 и χ_2 с учетом (11), получим:

$$\begin{cases} \chi_{1} = \frac{t + [1 - K_{c}p_{2}(a_{2} - c)]}{t\sqrt{(a_{1}p_{1} - a_{2}p_{2})^{2} + 4p_{1}p_{1}c^{2}}} & if \quad t > 0 \\ \chi_{2} = \frac{t + [1 - K_{c}p_{1}(a_{1} - c)]}{t\sqrt{(a_{1}p_{1} - a_{2}p_{2})^{2} + 4p_{1}p_{1}c^{2}}} \end{cases}$$

$$(18)$$

И

$$\begin{cases} \chi_{1} = -K_{c} \frac{[1 - K_{c}p_{2}(a_{2} - c)] - t(1 - 3D_{2})}{t[(1 - K_{c}a_{1}p_{1})(1 - 3D_{1}) + (1 - K_{c}a_{2}p_{2})(1 - 3D_{2})]} & if \quad t < 0. \end{cases}$$

$$\chi_{2} = -K_{c} \frac{[1 - K_{c}p_{1}(a_{1} - c)] - t(1 - 3D_{1})}{t[(1 - K_{c}a_{1}p_{1})(1 - 3D_{1}) + (1 - K_{c}a_{2}p_{2})(1 - 3D_{2})]}$$

$$\chi_{3} = -K_{c} \frac{[1 - K_{c}p_{1}(a_{1} - c)] - t(1 - 3D_{1})}{t[(1 - K_{c}a_{1}p_{1})(1 - 3D_{1}) + (1 - K_{c}a_{2}p_{2})(1 - 3D_{2})]}$$

$$\chi_{4} = -K_{c} \frac{[1 - K_{c}p_{1}(a_{1} - c)] - t(1 - 3D_{1})}{t[(1 - K_{c}a_{1}p_{1})(1 - 3D_{1}) + (1 - K_{c}a_{2}p_{2})(1 - 3D_{2})]}$$

$$\chi_{5} = -K_{c} \frac{[1 - K_{c}p_{1}(a_{1} - c)] - t(1 - 3D_{1})}{t[(1 - K_{c}a_{1}p_{1})(1 - 3D_{1}) + (1 - K_{c}a_{2}p_{2})(1 - 3D_{2})]}$$

і). В случае несбалансированной системы ($c \neq \bar{c}$) члены в квадратных скобках в числителях выражений (18)–(19) отличны от нуля и величиной t в числителях можно пренебречь. Тогда восприимчивость системы $\chi = p_1 \chi_1 + p_2 \chi_2$ принимает классический вид:

$$\chi = \frac{1 - K_c p_1 p_2 (a_1 + a_2 - 2c)}{|t| \sqrt{(a_1 p_1 - a_2 p_2)^2 + 4p_1 p_1 c^2}} \quad if \quad t > 0 \quad or \quad t < 0,$$
(20)

справедливый как при t > 0, так и при t < 0.

іі). В случае сбалансированной системы $(c=\bar{c})$ имеют место равенства $[1-K_cp_2(a_2-\bar{c})]=[1-K_cp_1(a_1-\bar{c})]=0$. При этом величины χ_1 и χ_2 в (18) и (19) обращаются в константы, а полная восприимчивость $\chi=p_1\chi_1+p_2\chi_2$ и при t>0, и при t<0 принимает один и тот же «неклассический» вид:

$$\chi = \frac{1}{|\bar{c}|}. (21)$$

Из (20) и (21) для критических параметров вытекает:

$$\begin{cases} \gamma = \gamma' = 1 & \text{if } c \neq \bar{c} \\ \gamma = \gamma' = 0 & \text{if } c = \bar{c} \end{cases}$$
 (22)

Стоит отметить, что в сбалансированной системе (7), т. е. при $c = \bar{c}$, значения парциальных восприимчивостей χ_1 и χ_2 испытывают конечный скачок в критической точке, а полная восприимчивость $\chi = \chi(K)$ при этом является непрерывной функцией.

4. Γ ипотеза подобия. Kритический показатель δ

Согласно гипотезе скейлинга, поле H вблизи критической точки является однородной функцией переменных $M^{1/\beta}$ и t. Рассмотрим, как от параметров взаимодействия зависит величина критического показателя δ и вид функции скейлинга.

і). Случай несбалансированной системы ($c \neq \bar{c}$). Разлагая уравнения состояния (5) по малым параметрам m_1, m_2, t и выделив полную намагниченность $M = p_1 m_1 + p_2 m_2$, получим:

$$K_c H = M^3 R_1 + t M R_2, (23)$$

где

$$R_{1} = \frac{(1 - K_{c}a_{1}p_{1})^{2} p_{1} + (1 - K_{c}a_{2}p_{2})^{2} p_{2}}{3p_{1}p_{2} [1 - K_{c}p_{1}p_{2}(a_{1} + a_{2} + 2|c|)]^{2}}, \quad R_{2} = \frac{K_{c}\sqrt{(a_{1}p_{1} - a_{2}p_{2})^{2} + 4p_{1}p_{2}c^{2}}}{1 - K_{c}p_{1}p_{2}(a_{1} + a_{2} + 2|c|)}.$$
 (24)

Нетрудно убедиться, что гипотеза подобия подтверждается в рассматриваемом случае, поскольку при $c \neq \bar{c}$ из (13) имеем $\beta = 1/2$. Действительно, выражение (24) представимо в классическом виде $K_c H = M \left| M \right|^{\delta - 1} h_s \left(t \left| M \right|^{-1/\beta} \right)$ с критическим показателем $\delta = 3$ и функцией скейлинга $h_s(x)$ вида:

$$h_s(x) = R_1 + R_2 x$$
, где $x = t/M^2$. (25)

іі). Случай сбалансированной системы ($c=\bar{c}$). Проводя аналогичные вычисления с учетом соотношений $1-K_c p_1 (a_1+|\bar{c}|)=1-K_c p_2 (a_2+|\bar{c}|)=0$, имеющих место в случае $c=\bar{c}$, получим:

$$K_c H = \begin{cases} K_c |\bar{c}| M & , t > 0 \\ K_c |\bar{c}| M - |t|^{3/2} R_3 & , t < 0 \end{cases}$$
, где $R_3 = \frac{\sqrt{3} p_1 p_2 |p_1 - p_2|}{(1 - 3p_1 p_2)^{3/2}}$. (26)

Для данного случая из (14) имеем $\beta=3/2$. Соответственно, выражение (26) можно представить в классическом виде $K_cH=M\,|M|^{\delta-1}\,h_s\left(t\,|M|^{-1/\beta}\right)$ с критическим показателем $\delta=1$ и функцией скейлинга $h_s(x)$ вида:

$$h(x) = \begin{cases} K_c |\bar{c}| & , \quad t > 0 \\ K_c |\bar{c}| - |x|^{3/2} R_3 & , \quad t < 0 \end{cases}, \quad \text{где} \quad x = t/M.$$
 (27)

Нетрудно заметить, что в рассматриваемом случае $c=\bar{c}$ соотношения Рушбрука $\alpha+2\beta+\gamma\geq 2$, Видома $\gamma\geq\beta(\delta-1)$ и Гриффитса $\beta(\delta+1)\geq 2-\alpha$ строго выполняются как неравенства. В то же время утверждается [17], что как следствие гипотезы подобия эти соотношения должны обращаться в строгие равенства. Таким образом, справедливость гипотезы скейлинга в случае $c=\bar{c}$ остается под вопросом.

Подводя итог предыдущим пунктам этого раздела, отметим, что критические показатели рассматриваемой модели соответствуют показателям классической модели среднего поля при условии $c \neq \bar{c}$, когда эффективные числа соседей в разных подрешетках не равны друг другу (см. таблицу 1). Однако в сбалансированной системе, когда выполняется условие (7), т. е. $c = \bar{c}$, критические показатели β , γ и δ принимают неклассические значения. При этом нарушается соотношение $\alpha + 2\beta + \gamma = 2$, являющееся следствием гипотезы скейлинга.

Критические показатели

Таблица 1

Критический показатель	$a_1p_1 + cp_2 \neq a_2p_2 + cp_1$	$a_1p_1 + cp_2 = a_2p_2 + cp_1$
	$(c \neq \bar{c})$	$(c=\bar{c})$
α	0	0
β	1/2	3/2
$\gamma = \gamma'$	1	0
δ	3	1
гипотеза скейлинга	подтверждается	?

В заключение раздела покажем, как в случае $c=\bar{c}$ меняются зависимости некоторых физических величин. На рисунке 1а показана зависимость восприимчивости от температуры в отсутствии внешнего поля $\chi(K,0)$. Видно, что при $c\neq\bar{c}$ восприимчивость расходится в критической точке, как и в случае классической модели среднего поля, а при $c=\bar{c}$ восприимчивость имеет конечное критическое значение, определяемое выражением (21).

При «критическом» значении антиферромагнитного взаимодействия $(c=\bar{c})$ также изменяются и зависимости парциальных намагниченностей от поля при критической температуре $m_1=m_1(H,K_c)$ и $m_2=m_2(H,K_c)$. Как видно на рисунке 1b, несбалансированная система $(c\neq\bar{c})$ при малых значениях

поля H находится в антиферромагнитном состоянии ($m_1m_2 < 0$), переходя плавно в ферромагнитное ($m_1m_2 > 0$) при дальнейшем увеличении поля. В то же время сбалансированная система ($c = \bar{c}$) находится в ферромагнитном состоянии при любом значении H. При этом парциальные намагниченности равны друг другу ($m_1 = m_2$).

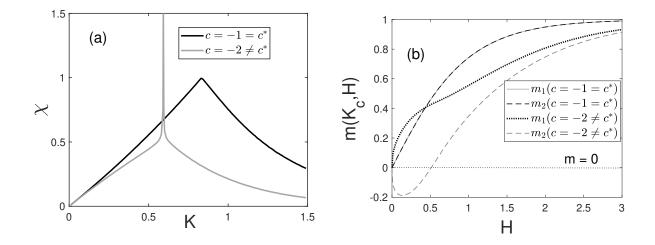


Рис. 1. Изменение характера зависимостей физических величин при «критическом» значении антиферромагнитного взаимодействия: (а) зависимость восприимчивости $\chi = \chi(K,0)$ при H=0; (b) зависимости парциальных намагниченностей $m_1 = m_1(K_c, H)$ и $m_2 = m_2(K_c, H)$ от поля H в критической точке ($K=K_c$). Кривые построены при $a_1=4$, $a_2=8$, $p_1=0.6$, $p_2=0.4$. На правом рисунке кривые $m_{1,2}=m_{1,2}(K_c, H)$ в случае $c=\bar{c}$ сливаются

Компьютерное моделирование

Проведем сравнение полученных выше выражений с результатами компьютерного моделирования для решеток с конечным радиусом взаимодействия. Мы хотим убедиться, что в случае «критического» значения антиферромагнитного взаимодействия $c=\bar{c}$, имеющего место при выполнении условия баланса (7), критические показатели принимают неклассические значения, приведенные в таблице 1. Для этого рассмотрим трехмерную кубическую решетку, состоящую из чередующихся двумерных слоев толщиной в один спин. Взаимодействие спинов внутри слоя характеризуется константами взаимодействия $J_{11}>0$ и $J_{22}>0$ для четных и нечетных слоев соответственно. Взаимодействие между слоями антиферромагнитное и характеризуется константой $J_{12}<0$. Учитывалось взаимодействие только между ближайшими соседями.

Данная слоистая модель описывается следующим гамильтонианом:

$$NE = -\left(J_{11} \sum_{\langle i,j \rangle} \sigma_i \sigma_j + J_{22} \sum_{\langle i,j \rangle} \sigma_i' \sigma_j' + J_{12} \sum_{\langle i,j \rangle} \sigma_i \sigma_j'\right) - H\left(\sum_{i=1}^{N_1} \sigma_i + \sum_{j=1}^{N_2} \sigma_j'\right),\tag{28}$$

где $\langle i,j \rangle$ обозначает множество пар ближайших соседей. Связь констант взаимодействия слоистой модели с параметрами модели среднего поля задавалась выражениями:

$$a_1 = 8J_{11}, \quad a_2 = 8J_{22}, \quad c = 4J_{12}.$$
 (29)

Используя алгоритм Метрополиса, мы провели расчет термодинамических параметров сбалансированной системы (7), когда $c=\bar{c}$, для решеток размером $N=L\times L\times L$, где L – линейный размер решетки варьировался от 6 до 64.

Основные результаты компьютерного моделирования получены для простейшего случая $p_1 = p_2$, $a_1 = a_2$. Линейный размер решетки L всегда выбирался четным, чтобы можно было обеспечить равенство $p_1 = p_2$. Нами также было проведено предварительное моделирование для случая $p_1 \neq p_2$, однако результаты этого моделирования показали, что в этом случае не удается добиться равенства

модуля парциальных намагниченностей $|m_1|=|m_2|$ в широком диапазоне температур даже при выполнении условия равенства эффективного числа соседей (7). Возможной причиной такого результата является влияние граничных эффектов. Поэтому, чтобы возможно было изучить случай «критического» антиферромагнитного взаимодействия $(c=\bar{c})$, имеющего место в сбалансированной модели (7), моделирование проводилось только для случая $p_1=p_2$.

Результаты моделирования представлены на рисунках 2-5 и в таблице 2.

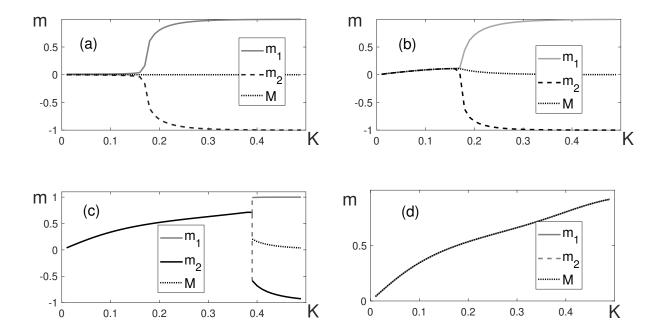


Рис. 2. Вид кривых $m_1 = m_1(K)$, $m_2 = m_2(K)$ и M = M(K) в сбалансированной системе при различных значениях внешнего поля. (a) H = 0, (b) $H = 0.25H_c$, (c) $H_c = 0.975H$, (d) $H = 0.9975H_c$. Всюду L = 24 и $a_1 = a_2 = 8$, $c = \bar{c} = -8$

і) Зависимости $m_{1,2}=m_{1,2}(K)$ и M=M(K). На рисунке 2 показаны температурные зависимости парциальных и полной намагниченностей слоистой модели, в случае, когда $a_1=a_2$ и $p_1=p_2$. Общий характер данных зависимостей аналогичен зависимостям, вытекающих из уравнений состояния (5) в случае сбалансированной системы ($c=\bar{c}$). В зависимости от величины внешнего поля может наблюдаться как «мягкий» сплиттинг (рисунок 2b), когда кривые мягко расходятся при некотором значении температуры $K=K_s$, так и «жесткий» сплиттинг (рисунок 2c), когда при $K\geq K_s$ кривые $m_1=m_1(K)$ и $m_2=m_2(K)$ расходятся скачком. Чтобы ход кривых на рисунке 2 стал понятнее, отметим: существует некоторое критическое значение магнитного поля $H_c=|\bar{c}|/2$, при $H< H_c$ основное состояние системы антиферромагнитно ($m_1=-m_2=1,\ M=0$), а при $H>H_c$ — ферромагнитно ($m_1=m_2=1,\ M=1$).

В случае, когда размер решетки достаточно большой и внешнее поле H близко, но меньше критического значения H_c , то при охлаждении система не переходит в антиферромагнитную фазу, а остается в локальном минимуме энергии (рисунок 2d). Такая же картина наблюдается и для полносвязной решетки (аналог модели среднего поля), если рассчитывать термодинамические параметры алгоритмом Метрополиса.

Во избежание недоразумений отметим, что «жесткий» сплиттинг, показанный на рисунке 2с, сопровождающийся скачком намагниченностей, наблюдался в симуляции только при относительно небольших размерах решетки $L \leq 24$, при которых можно преодолеть энергетический барьер между локальным и глобальным минимумами. Однако при больших размерах (L=32,64) в пределе $K\to\infty$ система всегда переходила в ферромагнитное состояние с намагниченностью M=1, которое в случае $H < H_G$ является локальным минимумом.

іі) Восприимчивость $\chi=\chi(K)$. На рисунке 3 представлена температурная зависимость восприимчивости $\chi=\chi(K)$ в слоистой модели при отсутствии внешнего поля H=0. Как видим (рисунки

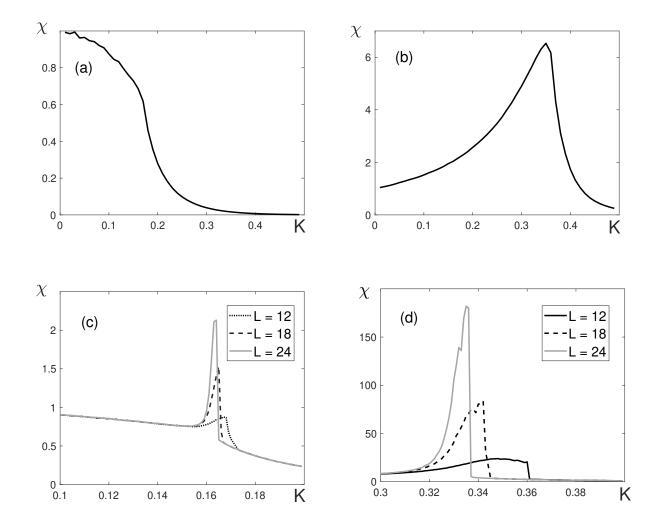


Рис. 3. Зависимость $\chi=\chi(K)$. Сбалансированная система (a) $a_1=a_2=8$, c=-8; (b) $a_1=a_2=8$, c=-0.4. Несбалансированная система (c) $a_1=9.6$, $a_2=8$, c=-8; (d) $a_1=9.6$, $a_2=8$, c=-0.4. Для (a) и (b) кривые $\chi(K)$ не зависят от размера решетки L

За и 3b), в случае сбалансированной системы ($a_1=a_2$, т. е. $c=\bar{c}$) вид кривой $\chi=\chi(K)$ не зависит от размера решетки L, и восприимчивость в критической точке принимает конечное значение. При больших значениях $|\bar{c}|$ на графике $\chi(K)$ отсутствует максимум (рисунок 3a). Таким образом, в сбалансированной системе критические показатели $\gamma=\gamma'=0$, что согласуется с результатами в таблице 1.

Для сравнения проведен эксперимент и на несбалансированной системе для случая $a_1 \neq a_2$. Как и следовало ожидать, в этом случае на кривой $\chi = \chi(K)$ в критической точке наблюдается пик восприимчивости (рисунки 3c и 3d). Высота этого пика увеличивается с ростом размера решетки L, то есть восприимчивость расходится в критической точке. Этот результат соответствует классическим критическим показателям $\gamma = \gamma' = 1$.

ііі) Критический показатель δ . Для того, чтобы получить значение критического показателя δ , необходимо сначала оценить значение критической температуры K_c . Оценка критической температуры производилась посредством построения температурных зависимостей кумулянтов Биндера [19] для решеток различных размеров. Асимптотическое значение K_c для случая $L \to \infty$ определяется как точка пересечения данных зависимостей. Определим кумулянты Биндера для парциальных и полной намагниченностей следующим образом:

$$g_1 = 1 - \frac{\langle m_1^4 \rangle}{3 \langle m_1^2 \rangle^2}, \quad g_2 = 1 - \frac{\langle m_2^4 \rangle}{3 \langle m_2^2 \rangle^2}, \quad g = 1 - \frac{\langle M^4 \rangle}{3 \langle M^2 \rangle^2}. \tag{30}$$

В случае сбалансированной системы ($a_1=a_2$), полная намагниченность M равна нулю при отсутствии внешнего поля. Поэтому критические температуры пришлось определять по кумулянтам парциальных намагниченностей (рисунок 4a). Результаты, полученные с помощью кумулянтов g_1 и g_2 , дают приблизительные одинаковые значения K_c . Соответственно, это позволяло определять величину показателя $\delta=1$ с точностью до 10^{-3} (таблица 2).

Таблица 2 Оиенка критического показателя δ для слоистой модели

Параметры модели	K_c	δ	
Сбалансированная система ($c=ar{c}$)			
$a_1 = a_2 = 8, c = -0.4$	0.3580	0.9982	
$a_1 = a_2 = 8, c = -2$	0.2710	0.9921	
$a_1 = a_2 = 8, c = -4$	0.2217	0.9974	
$a_1 = a_2 = 8, c = -8$	0.1707	1.0085	
$a_1 = a_2 = 8, c = -12$	0.1430	1.0012	
Несбалансированная система ($c \neq \bar{c}$)			
$a_1 = 4, a_2 = 8, c = -8$	0.1985	2.2929	
$a_1 = 16, a_2 = 8, c = -4$	0.1615	4.4033	
$a_1 = 16, a_2 = 8, c = -8$	0.1310	2.5688	
$a_1 = 16, a_2 = 8, c = -12$	0.1125	3.1631	
$a_1 = 24, a_2 = 8, c = -8$	0.1010	3.1175	

Если система не сбалансирована ($a_1 \neq a_2$), то кумулянты g_1 и g_2 дают различные оценки K_c . При этом кумулянты для полной намагниченности g не пересекаются в одной точке (рисунок 4b). Поэтому в данном случае мы оценивали K_c приблизительно как середину интервала, в котором происходит скачок кумулянта g. Как видно из таблицы 2, такая неточность определения величины K_c привела к большому разбросу полученных значений показателя δ .

Для оценки показателя δ были построены зависимости $\ln M$ от $\ln H$ (см. рисунок 5).

Если $a_1=a_2$, то зависимости $\ln M$ от $\ln H$ для решеток различных размеров L сливаются в одну линию уже при достаточно малых значениях H (см. рисунок 5a). Величина показателя δ оценивалась по уровню наклона данной зависимости. Найдено, что показатель δ не зависит от величины соотношения a/|c| и приблизительно равен 1 (таблица 2). Отклонение от значения 1 составляет порядка 10^{-3} , что сравнимо с погрешностью нашей оценки. Таким образом, значение показателя δ в этом случае полностью совпадает с значением $\delta=1$ в сбалансированной модели ($c=\bar{c}$).

Если $a_1 \neq a_2$, то кривые $\ln M$ от $\ln H$ выходят на линейную зависимость при некоторой величине поля H, значение которого уменьшается с ростом L (см. рисунок 5b). Значение показателя δ , измеренного по углу наклона данной зависимости, для всех исследованных систем сильно отличается от ожидаемого результата $\delta = 3$ (таблица 2) и зависит от параметров модели.

Обсуждение результатов

Нами была рассмотрена спиновая система на полносвязном графе, состоящая из двух подрешеток, антиферромагнитно взаимодействующих между собой. Получены аналитические выражения для критических показателей такой системы, которые сравниваются с результатами компьютерного моделирования на слоистой модели с конечным радиусом взаимодействия. По результатам работы можно сделать следующие выводы.

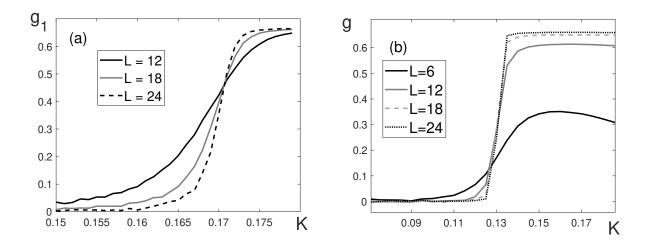


Рис. 4. Кумулянты Биндера: (а) сбалансированная система $a_1 = a_2 = 8$, c = -8; (b) несбалансированная система $a_1 = 16$, $a_2 = 8$, c = -8

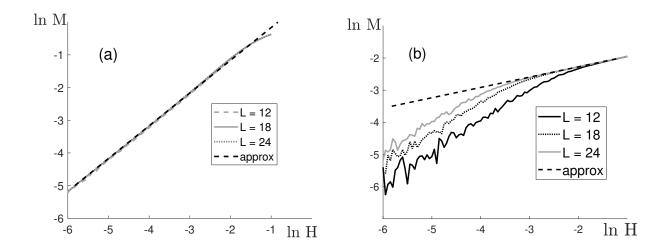


Рис. 5. Зависимости $\ln M$ от $\ln H$. Черная прерывистая линия – линейная аппроксимация, по которой рассчитывался показатель δ . (а) Сбалансированная система $a_1 = a_2 = 8$, c = -0.4, что соответствует $c = \bar{c}$; (b) $a_1 = 24$, $a_2 = 8$, c = -8, что соответствует $c \neq \bar{c}$

При переходе от несбалансированной системы $(c \neq \bar{c})$ к сбалансированной $(c = \bar{c})$ классический вид критических показателей $(\alpha = 0, \beta = 1/2, \gamma = \gamma' = 1, \delta = 3)$ сменяется неклассическим $(\alpha = 0, \beta = 3/2, \gamma = \gamma' = 0, \delta = 1)$. Этот результат приведен в таблице 2, из которой также следует, что справедливые при $c \neq \bar{c}$ неравенства $\alpha + 2\beta + \gamma \geq 2, \gamma \geq \beta(\delta - 1)$ и $\beta(\delta + 1) \geq 2 - \alpha$ остаются справедливыми и при $c = \bar{c}$. В то же время классический вид функции скейлинга (25), имеющий место при $c \neq \bar{c}$, при $c = \bar{c}$ сменяется «неклассическим» выражением (27).

Изменение критических параметров подтверждается результатами компьютерного моделирования на трехмерной слоистой решетке. В частности, показано, что сбалансированная ($c=\bar{c}$) система (7) действительно обладает следующими критическими показателями $\gamma=\gamma'=0$ и $\delta=1$. Приведенные на рисунке 2 зависимости $m_{1,2}=m_{1,2}(K)$ и M=M(K), полученные в ходе компьютерного моделирования, повторяют ход теоретических кривых, вытекающих из уравнений состояния (5).

ЛИТЕРАТУРА

- 1. Ilkovič V. Magnetic Properties of Ising-Type Ferromagnetic Films with a Sandwich Structure. *Physica Status Solidi (b)*. 1998;207(1):131–137.
- 2. Kuzniak-Glanowska E., Konieczny P., Pe-lka R., Muzio-l T. M., Kozie-l M., Podgajny R. Engineering of the XY Magnetic Layered System with Adeninium Cations: Monocrystalline Angle-Resolved Studies of Nonlinear Magnetic Susceptibility. *Inorganic Chemistry*. 2021;60(14):10186–10198.
- 3. Grünberg P. Layered Magnetic Structures in Research and Application. *Acta Materialia*. 2000;48(1):239–251.
- 4. Taborelli M. et al. Magnetic Coupling of Surface Adlayers: Gd on Fe (100). *Physical Review Letters*. 1986;56(26):2869.
- 5. Camley R. E., Tilley D. R. Phase Transitions in Magnetic Superlattices. *Physical Review B*. 1988;37(7):3413.
- 6. Camley R. E. Properties of Magnetic Superlattices with Antiferromagnetic Interfacial Coupling: Magnetization, Susceptibility, and Compensation Points. *Physical Review B*. 1989;39(16):12316.
- 7. Lipowski A. Critical Temperature in the Two-Layered Ising Model. *Physica A: Statistical Mechanics and its Applications*. 1998;250(1–4):373–383.
- 8. Horiguchi T., Lipowski A., Tsushima N. Spin-32 Ising Model and Two-Layer Ising Model. *Physica A: Statistical Mechanics and its Applications*. 1996;224(3–4):626–638.
- 9. Diaz I. J. L., Branco N. S. Monte Carlo Simulations of an Ising Bilayer with Non-Equivalent Planes. *Physica A: Statistical Mechanics and its Applications*. 2017;468:158–170.
- 10. Diaz I. J. L., Branco N. S. Monte Carlo Study of an Anisotropic Ising Multilayer with Antiferromagnetic Interlayer Couplings. *Physica A: Statistical Mechanics and its Applications*. 2018;490:904–917.
- 11. Gharaibeh M. et al. Compensation and Critical Behavior of Ising Mixed Spin (1-1/2-1) Three Layers System of Cubic Structure. *Physica A: Statistical Mechanics and its Applications*. 2020;550:124–147.
- 12. Drovosekov A. B., Kholin D. I., Kreinies N. M. Magnetic Properties of Layered Ferrimagnetic Structures Based on Gd and Transition 3d Metals. *Journal of Experimental and Theoretical Physics*. 2020;131:149–159.
- 13. Telford E. J. et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr. *Advanced Materials*. 2020;32(37):2003240.
- 14. Wang Y. et al. Topological Semimetal State and Field-Induced Fermi Surface Reconstruction in the Antiferromagnetic Monopnictide NdSb. *Physical Review B*. 2018;97(11):115133.
- 15. Hansen P. L. et al. Two Coupled Ising Planes: Phase Diagram and Interplanar Force. *Journal of statistical physics*. 1993;73:723–749.
- 16. Ferrenberg A. M., Landau D. P. Monte Carlo Study of Phase Transitions in Ferromagnetic Bilayers. *Journal of applied physics*. 1991;70(10):6215–6217.
- 17. Baxter R. J. Exactly Solved Models in Statistical Mechanics. London; Academic Press; 1982.
- 18. Крыжановский Б. В., Литинский Л. Б. Обобщенное уравнение Брегга–Вильямса для систем с произвольным дальнодействием. *Доклады АН*. 2014;459(6):680–684.
- 19. Binder K. Finite Size Scaling Analysis of Ising Model Block Distribution Functions. *Zeitschrift für Physik B Condensed Matter.* 1981;43:119–140.