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Abstract: the study proposes two CRM models that simulate well interference. The models combine
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Aunnomayus: B padote npemioxkensl ase CRM-Mozenu, onuchIBaronie HHTEPGEPEHINIO CKBaXKHH.
Mopnenu momydeHsl MyTeM KOMOMHAIMK ypaBHEHHS MaTepHaIbHOTO OajaHca W ypaBHEHHs NMpuToka. B mep-
BOM MOZIETIM paccMaTpuBacTCsl OOIIMM Ul BCEX CKBa)KMH MOPOBBIM 00beM miacta. Bo Bropoil momenu Bce
CKBa)XMHBI UMEIOT MHIUBUAyaJbHbIE TTOPOBBIE 00BEMBI, MEXIY KOTOPBIMH IPOMUCXOIAT nepeTokd. Ha cun-
TEeTUYECKUX IpUMepax MOKa3aHo, YTO Ul OECKOHEYHOTO IUIacTa MOXKHO NPHUMEHSTh IIEPBYI0 MOAENb, a IS
OTPAaHMWYEHHOTO IIJIacTa Jy4IINne Pe3yJabTaThl JAaeT BTOpas MOJEIb.

Kniouegvie crosa: CRM-monens, nHTephepeHns CKBaKUH.
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Introduction

A capacitance resistive model (CRM) [1] describes the operation of several wells draining the same
formation. The model is a combination of the material balance equation (the formation fluid flow continuity
equation) and the well inflow equation [1]. There are many modifications of CRM models taking into
account the various effects.

Most publications consider analytical (or semi-analytical) solutions of the ordinary differential equa-
tion for downhole pressure or fluid flow rate obtained through a CRM model development [1-3]. This paper
deals with a numerical solution.

The advantage of CRM models is that the reservoir pressure value is not required as it changes
during the extraction, and its field measurements are rare and often irregular.

As a rule, such models are used to estimate the drained volumes of production wells and optimize
the reservoir pressure maintenance system [1-3]. They are also used for short-term forecasting of production
metrics.
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The purpose of this work is developing CRM models that evaluate reservoir filtration and capacitative
properties (including permeability) around the wells and in the inter-well space from the production logging
data. The production data, in this case, are fluid flow rate, injected water flow rate, and bottom hole
pressure. The fluid flow rate and the injected water flow rate are logged at all production and injection
wells. Most production wells are equipped with submersible electric submersible pumps (ESPs) with
telemetry units (TMUs) comprising of a pressure sensor at the pump suction line. Such units can measure
downhole pressure in production wells. The downhole pressure in injection wells is measured with dedicated
downhole pressure gauges (either stand-alone or plugged to a cable), or estimate from the wellhead pressure
with Bernoulli’s equation.

We will consider two CRM models of well interference as applied to the interference of a production
well and an injection well.

A Single Volume Model

Consider a single volume CRM model for the production-injection wells interference. The model is
a single volume since only the common pore volume served by both wells is considered. The system of
equations describing the production well operation under such conditions is as follows:

d
oWy = g ()~ 1 (0, n
@ ()= PIIP (1)~ Po (0] + 2 g 1) @

where (1) is the material balance equation (fluid flow continuity equation) in a drained volume; (2) is the
production well inflow equation (obtained by applying the potential theory to solving the planar steady-state
filtration problem [4]), c; is the total compressibility of the formation and the fluids saturating it; V), is the
pore volume; P(?) is the reservoir pressure, g, (?) is the injected water flow rate, ¢;(?) is the production fluid
flow rate, ¢ is time, P/ is the productivity factor of the producing well; K is the injection-to-production well
interference factor, Py (?) is the production well bottom-hole pressure. The equations are expressed through
the reservoir variables.
Let us express the reservoir pressure from the inflow equation (2):

P(t) = Po () + q (1) /P — giw (1) /K. 3)
By substituting (3) into (1), we obtain:

de 1 dql 1 inw

Expressing the downhole pressure derivative from (4), we obtain a first-order ordinary differential
equation with respect to Py:

ar, _ 1

o 1 dQZ ld%'w
dt Cﬂ/};

[iw (2) — q; (2) —ﬁE‘FK ar

)
Let us apply the first-order Runge-Kutta method to equation (5):
At 1 1
Po (t +At) = Py (t) + —7 [qiw (t) = q: ()] — 57 [ (1 + At) — g ()] + 7 [giw (1 + AL) — giw ()] (6)
ctVyp PI K

where At is the time increment.
As indicated in[4], the productivity and interference factors can be expressed as:,

 2nkihy 1
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where k; is the reservoir permeability at the production well location; /| is the reservoir thickness at the
production well location; g is the fluid dynamic viscosity; R, is the external reservoir boundary radius; 7y is
the production wellbore radius; S is the production well skin factor; k9 is the reservoir permeability in the
inter-well area; /9 is the reservoir thickness in the inter-well area; ;o is the production to injection well
distance.

Provided that other variables are known, equations (7) and (8) give the k; reservoir permeability at
the production well and the k9 reservoir permeability in the inter-well area. If the skin factor for a particular
well is unknown (it is a typical situation in real life), we can use an empirical skin factor vs. permeability
relation obtained from the results of hydrodynamic studies in other wells in the same reservoir [5]. The
fluid viscosity should generally be estimated taking into account the relative phase permeabilities.

To account for the stationary inflow as the well operation mode changes, the following correction
factors are applied to the productivity and interference factors [3]:

PI
K (1 u (10

- 1+ b191n (t/t12) ’

where b and b9 are constant factors; ¢; and ¢ are the periods of relaxation.

For an infinite reservoir (in real life, a very large value of the V), pore volume when no reservoir
pressure drop occurs), the external reservoir boundary radius is estimated by the Pisman equation [6]. In
this particular case it can be reduced to:

R. = 0,12V/2F, (11)
Vo

where F' is the drainage area, m is the reservoir porosity.
For a limited reservoir (relatively small V, pore volume), the drainage zone shape can be represented
as an ellipse with the well at its focal points. Then we can use Borisov’s equation [7] to approximate the

external reservoir boundary radius:
Re =2a+\/4a% —r},, (13)

T2 A+ [T /16 + An2F?
22 ’

a =

(14)

where a is the major semi-axis of the ellipse.

If the production well downhole pressure, fluid flow rate and water injection volume values are
available, we can estimate the reservoir parameters by adapting the downhole pressure model (6). For this,
the following optimization problem is to be solved:

Fo =Y [Peor—PLw] —o (15)

t

where F' is the function to be minimized; X is a vector of variables; the ¢ and f superscripts indicate the
estimated and actual values, respectively. We add the values for each moment ¢ when the actual downhole
pressure value is available.
The optimization problem variables are:

1) V,: porous volume

2) PI: production well productivity factor

3) K: production-to-injection well interference factor

4) by and b9 factors

5) t; and t;9 relaxation periods.
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If PI and K are known, we can estimate k| and ko provided that other variables are also available.
The above model can be easily generalized for a larger number of wells.

A Multivolume Model

Let us consider a multivolume CRM model of well interference. The model is multivolume since
the number of pore volumes considered is equal to the number of wells. Each well operates in its dedicated
pore volume. There are inter-flows between the porous volumes of the wells. The system of equations
describing the production and injection wells operation under such conditions is as follows:

Vo S = 1 ()~ 410, (16)
Vo S = g ()~ a1 (0. (17)
q (1) = PL [Py () — Puy ()], (18)
Giw (t) = Pl [Pw,Q (t) - P (t)] ) (19)
go1 (1) = Plyy [P (t) — P1 (1)], (20)

where (16) and (17) are material balance equations (fluid continuity equations) for the porous volumes of the
production and injection wells, respectively; (18) and (19) are the production well inflow and injection well
outflow equations, respectively; (20) is the porous volume-to-porous volume inter-flow equation; subscript
“1” indicate the production well porous volume; superscript “2” indicate the injection well porous volume;
ct,1 and c;o are the total compressibility of the reservoir and the fluids saturating it; V), and V), o are
the porous volumes; P;(¢) and Py(¢) are the reservoir pressures; ¢, (?) is the injection water rate; ¢;(¢) is
the production well flow rate; go; is the second-to-first porous volume inter-flow; ¢ is time; P/, is the
production well productivity factor; Py is the injectivity factor of the injection well; Ply; is the porous
volume-to-porous volume inter-flow factor; Py 1(¢) and Py, o(?) are the downhole pressures of the production
and injection wells, respectively. The equations are expressed through the reservoir variables.
Let us express reservoir pressures from (18) and (19):

Py (t) = Py (t) + 1 (1) /PI, e2))

Py (1) = Py (t) — giw () /P, (22)
By substituting (21) and (22) into (16) and (17), respectively, we obtain:

dpw,l 1 dql .
Vi (T4 ) = (0 = a0, (3)

dt  Ply dt

Expressing the downhole pressure derivatives from (23) and (24), we obtain a first-order ordinary
differential equation with respect to Py 1 and Py o:

dP, 1 dgiw
oV, ( 2_ 1 dq )=ql~w<t>—q21<t>. 24)

de 1 1 1 dq1
1 _ S 2
i v [g21 () — q: ()] T, (25)
dPy o 1 By dqlw
= = iw (1) — . 26
Let us apply the first-order Runge-Kutta method to equations (25) and (26):
At 1
Poi (t+ At) = Pyi (1) + A (921 (1) —qi ()] — I, [q: (1 + At) — g, (1)] 27
Poo (t+ At) = Py (1) + (g7 (1) = 21 (D] + 5 [sz (t+ At) — giw (1)], (28)

Ci 2 V



L. V. Afanaskin, P. V. Kryganov, A. A. Glushakov, P. V. Yalov
20 CRM Well Interference Models for Evaluating Reservoir Filtration and Volumetric Properties from Production Data

where
o1 (t) = Plyy [Py (t) — Py (1) — qi (t) /PIy — qiw (1) /PL] (29)

At is the time increment.
Productivity (injectivity) and inter-flow factors can be defined as follows:

pi, = 2Tkil R ! =12 (30)
neoom (R
Py = 2 A2l G
H 1

where k| and ko are the reservoir permeability at the production and injection wells, respectively; 4; and
ho are the reservoir thicknesses at the production and injection wells, respectively; p is the fluid dynamic
viscosity; R. | and R, o are the external reservoir boundary radii; 7, ; and ry, o are the bore well diameters;
S| and S9 are the well skin factors; ko; is the reservoir permeability in the inter-well area; /9, is the reservoir
thickness in the inter-well area; r9; is the production-to-injection well distance; 4o is the length of the wells
porous volume interface where the fluid inter-flows occur.

Provided that other variables are known, equations (30) and (31) give the k;, ko reservoir permeabil-
ity at the well location and the k9| reservoir permeability in the inter-well area.

To account for the stationary inflow as the well operation mode changes, we can introduce correction
factors to the productivity and interference factors similar to (9).

The external reservoir boundary radius can be determined with Pisman equation [6]. In this particular
case it can be reduced to:

R.;=0,12V/2F,i =12, (32)
V .

F=-2 i=12 33

13 mlhl 12 )&y ( )

where F; and F9 are draining (injection) areas; m; and mo are the porosities.

The shape of the total drainage (injection) area of the two wells can be represented as an ellipse
with the wells located at its focal points. Then, the ellipse geometry equations can be used to estimate the
length of the interface between the well pore volumes through which the fluid flows:

A = 2b, (34

b=+/a%?— r221/4, (39)

7% /4 + 7ty /16 + 4n2F2
2

2

a =

: (36)

where @ and b are the major and minor ellipse semi-axes.

If the production well downhole pressure, fluid flow rate and water injection volume values are
available, we can estimate the reservoir parameters by adapting the downhole pressure model (27) and (28).
For this, the following optimization problem is to be solved:

FX) = Z { [Pzg,l (t) — Pa[;,l (t)}2 + [ 0.2 (1) _Pz[;,Q (f)r} — 0, (37)

t

where F is the function to be minimized; X is a vector of variables; the ¢ and f superscripts indicate the
estimated and actual values, respectively. We add the values for each moment ¢ when the actual downhole
pressure value is available. The injection well downhole pressure can easily be estimated from the wellhead
pressure using Bernoulli’s equation.
The optimization problem variables are:

1) V,1 and V), o porous volumes

2) PI and Pl productivity and injectivity factors

3) Ply;: fluid inter-flow factor
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4) by and by factors account for the stationary inflow as the well operation modes change
5) t; and ¢#9: relaxation periods
If PI,, Pl and PIy; are known, we can estimate k|, koand koprovided that other variables are also
available.
The above model can be easily generalized for a larger number of wells.

Optimization Problem Solution
In this paper, we use Newton’s method to solve optimization problems. Let us consider its principles.
Suppose we need to find the minimum of the f(X) multi-argument function, where X=(x;, xo, x3,...,
Xn). This problem is equivalent to the problem of finding the X values at which the gradient of the function
f(X) is zero:
grad (f (X)) = 0. (38)

Let us apply Newton’s method to (38):
grad (F (X)) + H (X) (X1 = x7) =0, (39)

where j=1,2,3,..., m is the iteration number, H(X) is a hessian of the function f{X).
Note that the Hessian of a function is a symmetrical quadratic form that describes the behavior of

the function in the second order:
n n
HX)=>> " ajxx;, (40)
i=1 j=1

where aij=82f /0x;0x;, f(X) is defined over an n-dimensional space of real numbers.
For convenience, equation (40) can be represented as:

Xt = X1 — H=V(X7) grad (f (X)) @D

Models Testing with Simulated Examples

Problem No. 1

Consider a two-well (production and injection) interference problem in a homogeneous infinite
reservoir as the well operation is variable. In general, Laplace images are used to obtain the exact solution
to such a problem. We used the Saphir software from Kappa Engineering to plot the production well
downhole pressure vs. time curve. The flow is single-phase. The initial data are as follows:

1) well radius: 0.1 m

2) reservoir thickness:9.1 m

3) reservoir porosity factor: 0.1 dec.qty

4) well-to-well distance: 300 m

5) volume factor: 1 m3/m3

6) dynamic fluid viscosity: 1 cps

7) total compressibility of the reservoir-fluid system: 4.267-10=° 1/bar
8) dimensionless well skin factor: 0

9) initial reservoir pressure: 350 bar

10) reservoir permeability: 50 mD.

Refer to Fig. 1 for the variable fluid flow rate and injected water flow rate.

We interpreted the flow rate and downhole pressure measurements using the single-volume CRM
model presented in Section 1. The downhole pressure curves are shown in Fig. 1. A satisfactory matching
of the downhole pressure curves was obtained. The results are as follows:

1) reservoir porous volume: 6.0-10'0 m3

2) production well productivity factor: 2.0 m3/day/bar

3) production-to-injection well interference factor: 6.2 m3/day/bar
4) reservoir permeability at the production well: 78.6 mD

5) reservoir permeability in the inter-well area: 59.6 mD.
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Figure 1. Well performance for a homogeneous infinite reservoir. CRM model No. 1

The resulted permeability values are in satisfactory agreement with the initial data.

Problem No. 2

Consider a two-well (production and injection) interference problem in a heterogeneous (in terms
of permeability) limited square-shaped reservoir. The wells operate in a variable mode. There is no exact
solution to such a problem. We used a simulation model developed with the Saphir software from Kappa
Engineering to plot the production well downhole pressure vs. time curve (refer to Fig. 2.) The flow is
single-phase. The piezoconductivity problem is solved. The Voronoi grid is used. The initial data are as
follows:

1) XY plane area size: 848x848 m
2) permeability at the production well: 50 mD
3) permeability at the injection well: 100 mD.

We used linear interpolation of the inter-well area permeability. The rest of the data are similar to
those used in Problem No. 1.

The fluid flow rate and the injected water flow rate are variable, refer to Fig. 3.

We used two approaches to interpret the flow rate and downhole pressure measurements.

The first one is using the single-volume CRM model described in section 1. The downhole pressure
curves are shown in Fig. 3. Good matching of the downhole pressure curves was obtained. The results are
as follows:

1) reservoir porous volume: 6.3-10° m?

2) production well productivity factor: 3.6 m>/day/bar

3) production-to-injection well interference factor: 40.2 m3/day/bar
4) reservoir permeability at the production well: 50.4 mD

5) formation permeability in the inter-well area - 105.7 mD.

The resulted permeability values are in satisfactory agreement with the initial data. The reservoir
permeability at the production agrees well with the target value. The reservoir permeability in the inter-well
area poorly agrees with the “actual” value that can be estimated from the initial permeability at the wells
using the average harmonic equation as 66.7 mD. This is probably due to imprecise external reservoir
boundary radius estimation as the drained volume is elliptical.
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Figure 2. Permeability distribution over the grid (Saphir software)

The second approach is using the multivolume CRM model described in Section 2. The downhole
pressure curves are shown in Fig. 4. Good matching of the downhole pressure curves was obtained.

The results are as follows:

1) reservoir porous volume at the production well: 3.19-10° m?
2) reservoir porous volume at the injection well: 3.21-10° m?
3) production well productivity factor: 3.7 m3/day/bar

4) injection well injectivity factor: 7.15 m3/day/bar

5) inter-flow factor: 12.5 m3/day/bar

6) reservoir permeability at the production well: 50.1 mD

7) reservoir permeability at the injection well: 96.2 mD

8) reservoir permeability in the inter-well area: 52.9 mD.

In general, the resulted permeability values are in good agreement with the initial data. The
reservoir permeability at the production and injection wells agrees well with the target values. The reservoir
permeability in the inter-well area satisfactory agrees with the “actual” value that can be estimated from the
initial permeability at the wells using the average harmonic equation as 66.7 mD.

Conclusion

This paper proposes two CRM models of production-injection well interference used to estimate the
reservoir filtration and volumetric properties based on the production data. The production data, in this case,
are fluid flow rate, injected water flow rate, and bottom hole pressure. CRM models are a combination of
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Figure 3. Well performance in a heterogeneous (in terms of permeability) square-shaped limited reservoir.
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Figure 4. Well performance in a heterogeneous (in terms of permeability) square-shaped limited reservoir.
CRM model No. 2

the material balance equation (the formation fluid flow continuity equation) and the well inflow equation.
The advantage of all CRM models is that the reservoir pressure value is not required as it changes during
the extraction, and its field measurements are rare and often irregular.

The first proposed model is single-volume because only one, common pore volume served by both

wells is considered.

The second proposed model is multivolume since the number of pore volumes considered is equal
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to the number of wells. Each well operates in its dedicated pore volume. There are inter-flows between the
porous volumes of the wells.

The models were applied to a two-well case: a production well and an injection well. However, the
models can be easily generalized for a larger number of wells.

This paper proposes to solve inverse subsoil hydrodynamics problems with CRM models by com-
bining estimated and actual downhole pressure values. The filtration and capacitative reservoir properties,
including its permeability in various regions, are evaluated in this way. The inverse problem is solved by
Newton’s method.

The models were tested with simulated examples generated by Kappa Engineering’s Saphir software.
It is shown that for an infinite reservoir (in real life, a very large porous volume value at which no reservoir
pressure drop occurs), the simpler first CRM model can be applied, while for a limited reservoir, the
second CRM model provides better results. In general, with the right choice of the proposed CRM models,
it is possible to determine the filtration and capacitative parameters with accuracy sufficient for practical
purposes.
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